
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7831

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MICROPROGRAMMED BENCHMARKS FOR THE SIGNAL Interim
PROCESSING ARITHMETIC UNIT OF THE
AN/UYK-17(XB-1) (V) SIGNAL PROCESSING ELEMENT 6. PERFORMING ORG. REPORT NUMBER

5490-245:EF:dlw
7. AUTHOR(s) l. CONTRACT OR GRANT NUMBER(|)

Harold H. Smith and Leonard E. Russo

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory NRL Prob 541B02-06/541B02-10
Washington, D.C. 20375 NASC WF21-241-601

NAVELECSYSCOM XF21-241-019
I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy January 29, 1975
Naval Electronics Systems Command 13. NUMBER OF PAGES

Washington, D.C. 20360 75
14. MONITORING AGENCY NAME & ADDRESS(if different Irom Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Bilck 20, if diffArent free Report)

Ia. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necess ary and identify by block number)

All Applications Digital Computer (AADC), AN/UYK-17(XB-1) (V) Signal Processing Element,
Microprogrammed Control Unit (MCU), Microprogramming, Signal processing, Signal Processing
Arithmetic Unit (SPAU), Signal Processing Element (SPE)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The AN/UYK-17(XB-1) (V) Signal Processing Element utilizes a Signal Processing Arithmetic
Unit (SPAU) to execute subroutines that involve extensive arithmetic operations. Five benchmark
programs were written for an early model of the SPAU and run on a simulator. As a result of
coding and executing these programs, several changes were made to the SPAU design.

DD FRJAN 7 1473 EDITION OF I NOV 45 IS OBSOLETE
S/N 0102-014-6601 1 i

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

.. uJRITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ii
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

CONTENTS

INTRODUCTION .. 1

OBJECTIVES . .. 1

DETAILED DESCRIPTIONS 2

Complex FFT .. 2
Real FFT ... 9
Coherent Demodulation and Octave Filtering 14
Complex Weighting 22
Crosscorrelation... 23

SUMMARY OF SPAU PERFORMANCE . . 27

DESIGN FEEDBACK .. 28

REFERENCES 29

APPENDIX A - Benchmark Specifications . . 30

APPENDIX B - Program Listings 44

APPENDIX C - Fast Fourier Transform Algorithm . . 67

GLOSSARY 71

111

MICROPROGRAMMED BENCHMARKS FOR THE SIGNAL PROCESSING
ARITHMETIC UNIT OF THE ANJUYK-17(XB-1)(V)

SIGNAL PROCESSING ELEMENT

INTRODUCTION

During the course of developing the AN/UYK-17(XB-1)(V) Signal Processing Element
(SPE) [1], 14 benchmark programs were written (see Appendix A) and executed on For-
tran simulators running on the KRONOS Timesharing System. In four of these programs
the Microprogrammed Control Unit (MCU) operated independently of the Signal Process-
ing Arithmetic Unit (SPAU); in five programs the MCU performed data transfer and con-
trol operations while the SPAU did basic signal processing operations; and in the other five
programs the MCU did data transfers and called the SPAU to do combinations of signal
processing operations. This document describes the five basic signal processing operations
used in these benchmarks as they were programmed in the SPAU. The MCU benchmark
programs are described elsewhere [2].

The AN/UYK-17 SPE is a digital processor that has been value engineered for the
execution of signal processing algorithms required in military weapons and sensor systems.
The SPE is microprogrammable so that it can be tailored to perform processing for partic-
ular system applications. The SPE can be used alone but is intended to be implemented
as a component of the All Applications Digital Computer (AADC) currently under devel-
opment by the Naval Air Systems Command.

OBJECTIVES

A central theme in the SPE program has been the idea of developing software archi-
tectural models prior to commission of the SPE design to hardware. In this way design
improvements could be developed during programming and easily fed back into the archi-
tecture design. In the process of coding the benchmarks, certain desirable features were
added to the design. These are described in the last section of this report. The bench-
marks provided measures of SPAU performance in terms of clock cycles required for execu-
tion and number of instructions required. Finally, the programs demonstrated the coding
of the SPAU to operate as a pipelined processor.

Manuscript submitted October 3, 1974.

1

SMITH AND RUSSO

DETAILED DESCRIPTIONS

The benchmark programs described herein (see also Appendix B) perform the follow-
ing functions:

1. A fast Fourier transform (FFT) [3] of an array of 4096 complex values, whose
16-bit real and imaginary parts are in adjacent halves of each buffer memory word.

2. An FFT of an array of 1024 real values that occupy consecutive 16-bit halves
of 512 buffer memory words.

3. A coherent demodulation and octave filtering [4] of an array of 1024 8-bit real
points packed four to a buffer memory word. At each octave, the input array is "deci-
mated" by a factor of 2 and split into quadrature channels by multiplication by sine and
cosine time functions. Four-pole low-pass filters (LPF) are used in all 16 output channels,
and 7 filters are used between octaves.

4. A complex weighting (sum of complex products) of groups of four consecutive
complex points, selected from an input array of 256 points. The array of 1024 weights
is irregularly addressed with respect to the corresponding input points.

5. A cross correlation [5] of points from 32 channels with 32 beams and steering
delays over 1024 frequencies. Each output point is the product of three complex factors.
The input channel and beam data have 32-bit precision; the output data have 16-bit pre-
cision.

Complex FFT

The program LFFT performs a fast Fourier transform on an array of N complex
points where N is a power of 2 and lies between 16 and 4096, inclusive. It is used in the
benchmark programs to transform 4096 complex points and to transform 1024 real points
as a packed 512 point array (see the following subsection). The output values, denoted
by A(n), are complex (16 bits real and 16 bits imaginary) and are derived from the com-
plex input points, denoted by X(j), according to the discrete Fourier transform (DFT)
equation

N--1 /27r ij n
A(n) = E X (j) exp (), (1)

wherein i = V-j and N is the number of input points (n = 0, 1, ..., N-1).

This equation is evaluated by means of a "variable shuffle" algorithm that is derived
in Appendix C [6,7]. The DFT may be expressed in matrix form as

A = WNX (2)

2

NRL REPORT 7831

where A and X are column vectors:

A = [A(0) A(1), . . . A(N-1)] T (3)

X = [X(0) X(1), . . . X(N_1)]T. (4)

The superscript T denotes a transpose of rows and columns. The element of matrix WN
at the nth row and jth column is

WN (nj) =[exp (2 i)nj modulo N]. (5)

The algorithm is based on a radix-2 factorization of WN, but unlike many FFT
algorithms it does not require bit-reversed reordering of the input or output array. It
does, however, require a data work area in memory that is twice the size of the input
array because the shuffling cannot be done "in place." The procedure consists of three
operations, each such triplet constituting a single stage:

1. Combine the input terms (to a stage) by forming sums and differences of pairs.

2. Shuffle the terms in a manner similar to the shuffling of playing cards. In the
first stage the array is "cut," and single terms are interleaved; in the second stage pairs of
terms are merged.

3. Multiply the terms by trigonometric weights.

The operations appear as separate factors in the expansion of WN:

WN LII]L0 jKN/2 SN!4 [L-i] L KN 4 N/2 LI-ii[.Kj] 1 Li-i] (

The S matrices perform the shuffle operations, I denotes the identify matrix (of
various dimensions, see Appendix C), and the K represents the weighting factors as
diagonal matrices:

KN/2 = diag (wo wI ... wN/2-1) (7)

KN/4 = diag (wo w2 ... w2(N/4-1)) (8)

where w = exp (2 r i/N).

Each complex sum and difference operation on a pair of terms may be represented
in a butterfly diagram, as depicted in Fig. 1. One stage of the FFT consists of N/2 such
butterflies, and the entire FFT involves log2 N stages. In the first stage the input points
to a butterfly, P1 and P2, are obtained from the input data vector X; and in the final
stage the output points, P11 and P21 are elements in the output vector A. The first three
variable shuffle operations are depicted in Fig. 2.

3

SMITH AND RUSSO

P1 (PlR+i PfI) * P1 /=P1 +WKP2

\ (~~WK)
W -exp- 2-i-

N~~~~~~

P2- (P2R + P2I) (K+ P2 /=P1 -WKP 2

Fig. 1 - FFT Butterfly diagram

Data Structure

The principal data structures employed in this macro are the input and output data
areas, both of which are in BUFA; the working data area of BUFB; the linkage data in
W addresses 0 through 4; and working data locations in W store. The data are treated as
complex 32-bit words in buffer, with the real parts in the 16 most significant bits and
the imaginary parts in the 16 least significant bits. On input to Stage 1 the data are read
from BUFA starting at the Data Address, which is contained in the linkage information
provided by the MCU. Output data from Stage 1 are stored in BUFB starting at the
Result Address, which is also part of the linkage from the MCU. On succeeding stages
data are both read and written from/to buffer areas that begin at the Result Address.

W Store - Address
No. Content

0 Control store starting address of LFFT
1 One-half the number N of input points
2 log 2 N
3 Data Address
4 Result Address (end of linkage)
5 Number of butterflies in a half group
6 Number of groups per stage
7 Unused
8 Read only memory (ROM) address increment
9 One

Coefficient Store - Addresses 0 through 1024 contain the sine and cosine of angles
between 00 and 90°, inclusive, at equal increments in angle. The sine is contained in the
16 most significant bits and the cosine in the 16 least significant bits.

4

NRL REPORT 7831

00O O-- -- p-

0 0
0
0
0

o 0

o 0

o 0
0

0- - - - 0~

(a) (b) (c)

Fig. 2 - Interstage shuffle: (a) First operation, (b) Second operation,
and (c) Third operation

5

0

2

3

4

5

6

7

8

9

N/2

N/2 + I

N/2 + 2

N/2 + 3

N - 5

N - 4

N - 3

N - 2

N - I

0------Ip--O

0------N-O

0-----D-O
0------*-O

SMITH AND RUSSO

Program Description

A Flow graph of a single butterfly calculation, as carried out in the SPAU, is shown
in Fig. 3. The sequencing of successive stages is shown in the flowchart of Fig. 4. Stage
1 involves angular exponents of 0° for all j, hence the values are read from ROM just one
time. Stage 2 uses the 00 and 90° values and therefore alternates between ROM address
0 and ROM address 1024. Each successive pair of butterflies uses the same angles. In
Stage 3 the same angles are used by groups of 4 butterflies, and in later stages by groups,
of 8, 16, and so forth. In Stage 3, the effect of angles in the second quadrant (i.e., 135°)
is taken into account by changing additions to subtractions or subtractions to additions.
Finally, in the General Stage, there are two distinct loops within the stage: for acute
angles the ROM address is constantly incremented until it reaches 1024, and for obtuse
angles it is decremented and some of the operations are changed in sign to account for
the second quadrant.

Input data are always read from the buffer on channel A (BUFA) and output data
are stored in the buffer on channel B (BUFB). At the end of each stage the roles of the
buffers are reversed by giving a SWAP command. The starting address of the initial prob-
lem data in BUFA is arbitrary, as is the starting address of the output results, which
ultimately are also in BUFA. Because two data areas are available, an out-of-place algo-
rithm is used to implement the FFT, and bit-reversed reordering of the input or output
points is avoided. The algorithm requires that the sequencing of the points be shuffled
between stages, which is done "on the fly" by properly generating "write" addresses.

P2I sin 8 P2R

Al

P1R
Y1

A2

R2 = Yl +Al - P'IR

(RI = Y1 - R - P'2R)

P2I cos0 P2R sine

A3

P1I
Y2

A4

R4 = Y2 + A3 P/lI

(R3 =Y2 - R3 - P'2I)

Fig. 3- Butterfly flow graph

6

NRL REPORT 7831

Fig. 4 - Flowchart of LFFT

7

SMITH AND RUSSO

At the end of each Stage 1 operation, the output points from a butterfly are written into
interleaved addresses in BUFB, in the manner shown in Fig. 2(a). The effect is as though
the original array in BUFA were "cut" in two, as a pack of playing cards, and shuffled
on a one-for-one basis, each point from the first half of the array being followed by a
corresponding point from the second half of the array. In Stage 2 the points are shuffled
in pairs, as shown in Fig. 2(b), in Stage 3 in quadruplets, as shown in Fig. 2(c), and in
groups of increasing powers of 2 in succeeding stages. At the end of the final stage no
additional shuffle is necessary: the points are in correct output sequence.

The first three stages of the FFT are programmed as distinct loops, and all succeeding
stages are programmed as a fourth type of loop. The latter consists of two subloops, one
for acute angles and one for obtuse angles. The first three stages are each terminated
under the control of CTRJ by counting the number of groups in the stage. The number
of butterflies within a group (respectively one, two, and four) is implicit in the coding.
In the fourth and succeeding stages, the number of butterflies is first counted to CTRK
to determine the end of a group, and then the number of groups is counted by CTRJ to
determine when the stage ends. The end of the FFT is indicated by CTRI, which counts
down from log2 N.

In the obtuse angle subloop, beginning at L38, the signs of the operations involving
P2, P4, and A3 are reversed to effectively change the sign of the cosine in the second
quadrant. In all stages the components of the butterfly output points are generated in
registers R1 through R4 and are packed before outputting, first from register pair R2R4
as a single 32-bit word, and then from R1R3. The two input points to any butterfly are
spaced N/2 positions apart, controlled by INCA. First, the lower point P2 is read, then
INCA is subtracted from the current contents of BARA, and the upper point P1 is read.
The shuffled output is controlled by the sequencing of BARB, which, in the first stage,
amounts to a constant increment by one address. In the second stage and thereafter,
INCB is set equal to the number of butterflies per group for that stage, which is the out-
put separation between the two points in any butterfly in that stage. At the end of each
group, BARB is incremented by one to begin the next group output.

Performance

The program was run to calculate transforms for data arrays involving 32, 64, 128,
256, 512, and 1024 complex points. Table 1 summarizes the number of clock pulses
required for each of these runs; the corresponding real time elapsed (at 150 ns per clock
interval); and the percent of clocks expended in overhead operations, obtained by sub-
tracting N log2 N from the total number of clock pulses and dividing by N log2 N, where
N is the number of data points.

8

NRL REPORT 7831

Table 1

Performance Time

Number of Complex | Total Number of Time (s) | Percent
Data Points | Clock Pulses j Overhead

32 192 28.8 20

64 423 63.5 10

128 941 141 5

256 2,100 315 2.5
512 4,668 700 1.3

1,024 10,307 1,550 0.6

Real FFT

A discrete Fourier transform of real data may be implemented using the FFT with
considerable savings in execution time if the conjugate symmetry of the spectra of real
data is exploited. The real FFT (REFFT) is a SPAU macro that exploits those symmetries.
The input to REFFT is an N/2-point complex array formed from an N-point real array
by-

1. Sequentially packing odd-indexed elements of real array into imaginary part of
complex array and even-indexed elements of real array to real part of complex array.

2. Fourier transforming N/2-point complex array using LFFT. N is any power of
2 in the interval from 16 to 4096.

REFFT unpacks the N/2-point array and completes the processing needed to output
an N-point spectrum array.

An N-point DFT is defined as follows:

N- 1
Fk = e-j27rmk/N Xm; k = 0, 1,..., N- 1,

m=0 (9)

where j = A.

It is desired to solve this for the case {Xm} real. Equation (9) may be expressed as
the sum of even- and odd-indexed terms:

N/2-1

Fk = E X2 me-j2rk2m/N +
m=1

N/2-1

E X2m+1e-j27rk(2m+l)/N
m=0

(10)

9

SMITH AND RUSSO

Let N' = N/2;k = pN'+ Q; p = 0, 1; Q = 0, 1, ..., N'-1; then

N'-1 N'-1
FpN'+Q= E X 2 me-j2ir(pN'+Q)2m/N + E X2m+le-j27r(pN'+Q) (2m+1)/N

m=0 m=0

N'- 1 N'- 1
= E X2 me-j2TrmQ/N' + (-1)Pe-j27rQ/N' F X2 m+le-j27rWm/N'

m=0 m=0

= F'Q + (-1) Pe-j2n9/N' F"Q. (11)

Here, FQ is the V + N frequency component of the N/2-point transform of IX2m I;
F"Q is the Rth frequency component of the N/2-point transform of {X2m+1 } . Knowing
F'Q and F"Q for all Q, it is possible to find {Fk }, the frequency array. Equation (11)
is the last stage of butterflies for the N-point FFT.

Up to now, the fact that Xm is real has not been used. { Xm I real provides a neat
way of computing {F', } and { F"Q } with one N/2-point complex FFT. To do this, the odd
components of {Xm } are packed in ascending order into the imaginary part of a complex
N/2 point array { Zm }. The even components of {Xm } are packed in ascending order
into the real part of {Zm -

Mathematically,

Zm 'X2m +iX2 m+I m = 0, ... , N'-1. (12)

Transforming both sides of Eq. (12) yields

fN/2 {Zm } = fN/2 {X2m 1+ ifN/2 {X2m+1j

={F'2 }+j{F" 2 } (13)

where FN/2 is the DFT of the N/2 point array in brackets. From Eq. (13) it is seen that

TQ = F'Q + jF"Q (14)

where TQ is the Qth term of fN/2 {Zm I -

Because (FQ ' and (FQ" } are transforms of real sequences, it follows that

F2 ' = F'*N/2-Q (15)

10

NRL REPORT 7831

FQ" = F N,2-2 . (16)

The transforms (F,'} and {FQ"} are complex but may be separated by using Eqs.
(15) and (16). Let TQ be the 9th frequency component in FN/2 {Zm} ; then

F2 '= TQ + T*N,2-2 (17)
2

F" T= - T*N,2-2 (18)
2i (8

Thus, REFFT will receive an N/2-point complex array that has been packed and
then transformed using LFFT. REFFT isolates arrays {F2 '} and {F2 "} as in Eqs., (17)
and (18), then completes the necessary butterfly operations in Eq. (11) to yield an N-
point array, the transform of the original real sequence Xm.

Data Structure

REFFT was written to be consistent with LFFT in the location of W store
parameters. The parameters left in W store by a call to LFFT for an N/2-point array
are just those needed by REFFT. The W store parameters are -

W(3): address of data array in BUFA
W(4): address of work space in BUFB
W(1): N/4, consistent with LFFT for N/2 points
W(2): m- 1, consistent with LFFT for N/2 points
W(8): 4096/N, consistent with LFFT for N/2 points.

The N-point complex transform array will be located in BUFB starting at the
location specified in W(3). The input data of N/2 complex points reside in BUFA
starting at location in W(3); they are processed to yield an unscaled transform array in
BUFB work space beginning at location in W(4). The transform array is scaled to give
a scaling identical to that of LFFT operating on the same real input array. Finally, the
scaled N-point transform array is located in BUFA starting at location in W(3).

Program Description

The input to REFFT is a complex array of N/2 points; it is the DFT of the com-
plex N/2 point array formed by placing even points of (Xm } in the real part and odd
points of {Xm } in the imaginary part where { Xm } is the real array that is to be trans-
formed. There are two main loops needed in REFFT to provide the necessary range of
phase angles in Eq. (11) with only a 900 read-only memory. In each loop, F'Q and
FQ" are isolated, then a butterfly is performed on the isolated values. Finally, the data
array is scaled by 1/2, a procedure that takes N-4 clocks. See Figs. 5 and 6.

11

SMITH AND RUSSO

INPUT OUTPUT

{T} {F}
0 9 0 001

K - K

N-K + -WN K

NW-1 0

ON-I

WN= exp(-j27rK/N)

To and TN/2 are treated as special cases. For example,

N-1 NLI
T0 z Z X2. +jZ X2m+1; thus,

M=O m'O

N' 1

Fo = Z X2m+l
m:O

may be obtained trivially since WN/2 Is real.

Input {Tj is an N/2 = N' point complex array. Output JF}
is an N- point complex array.

Fig. 5 - REFFT addressing and processing

12

F I F, AND Fj+N/21
ALIZE . i=+'
FER
-SSES

INPUT ith AND
N-jth POINTS x

CTRJ OF {T}

FORM FJ AND

0 N/2+~~~~~~~~YES FJ
qCY AS IEQ.il))
CASE N/4- CTRJ

DO BUTTERFLY
(EQS. (17) AND
(18)) OUTPUT SCALE OUTPUT

TWICE TO F, AND FN/2+J ARRAY {F)

i= i+' ; BY 2

1 | TWICE | (~~~~~~~~~~~~~~~~~~~~~~~~EXIT REFFT INDEX
-OINPUT jth AND

N-ijth POINTS 1f

W ~~~~~~OF T (/(EN)

Fig. 6 - Flowchart of REFFT. Two loops are necessary to step up and down 90° ROM giving effective
exponent range, 0 to 7r. We address ROM for exponential factors in Butterfly (Eq. (11)).

SMITH AND RUSSO

Performance

The times given assume packed data, but include the time for the N/2-point FFT
using LFFT. A real 1024-point FFT was run in 7241 clocks, of which 1020 are for
scaling and 4668 are for a 512-point complex FFT. In general, a real N-point transform
takes 5N/2+13+ LFFT(N/2) clocks. N-4 of these clocks are for scaling.

COHERENT DEMODULATION AND OCTAVE FILTERING

The macro OCT performs complex demodulation and octave filtering of a sequence of
real data points in the manner shown in Fig. 7. The input sequence is repeatedly filtered and
heterodyned to form eight octaves of complex data points. All of the filters are recursive
and consist of pairs of cascaded two-pole, two-zero modules. A block diagram of the basic
module is shown in Fig. 8. The output sequence of every filter is "decimated": three out
of every four output values are deleted in the case of the quadrature channel filters and one
out of every two output values is deleted for the filters between octaves. In the benchmark
program, 1024 real data samples are input initially so that the output in octave 8 consists of
256 complex points, in octave 7 128 points, and so forth down to octave 1, which contains
only 2 complex points.

Filter Implementation

As is shown in the filter block diagram of Fig. 8, the delayed terms W1 and W2 are
related to the initial feedback term Wo by the delay operator z- 1 [4]:

W1 = Z-1W

W2 = z1W = z-2Wo.

The filter output is

OUT= Wo +A1 WI +A2 W 2 = W0(1+AlZ 1 +A 2 z 2).

In terms of To, the input to the filter is

IN = Wo - B1 W1 - B2 W2 = Wo(1 - Blz 1 - B 2 z 2).

The filter implementation used in OCT differs slightly from Fig. 8 in that the feed-forward
term from Wo has been moved to the input side of the adder; it connects to IN rather
than Wo. This is accomplished by substituting for Wo in the expression for OUT. The
two quantities generated by the two-pole module are

OUT = IN + (A1 +Bl)Wl + (A2+B2)W2

14

NRL REPORT 7831

.2 /

5�fl WQ/2 t

X LPF
+4

OCTAVE 7

COS wo/128 t

. 4

OCTAVE 1

Fig. 7 - Octave Filter block diagram

15

I 8

LPF

(

SMITH AND RUSSO

x1

Fig. 8 - Two-pole block diagram for LPF

WO = IN + B1jW 1 + B 2 V2 .

The flow graph for the implementation of these equations is shown in Fig. 9. The
four coefficients, B1, B 2, A1 +B1 , and A2+B2, are stored in ROM and applied to multi-
pliers 1 to 4, respectively. The input value IN is read from buffer A into the Y store
and is applied to adders 2 and 4. The output of adder 2 is the Wo term, which is
delayed by storing it in the X store. Successive values of Wo are alternated between
X1 and X2 ; in each instance Wo replaces what had been W2 and the previous W1 be-
comes the new W2. The output of adder 4 is the output quantity from the two-pole
module. In the case of the first two pole module of a pair, it is used immediately as
the Y input to the second two pole.

B2 W1 A 1+Bj W2 A2+B2

M4

IN

WO OUT

Fig. 9 - Two-pole flow graph

16

NRL REPORT 7831

In choosing a value for fo, the frequency of the heterodyne oscillator in octave 8,
the following relationships have been assumed between fo and W, the bandwidth of the
input sequence, and f5, the sampling frequency:

3W
fo = -

5W
fs = -.

This corresponds to a 25% safety margin in the Nyquist rate (5/4 times 2W). The
ratio of fs to fo is thus 10/3, so that after every 10 samples, the oscillator has completed
three cycles and returned to its starting phase. The effect of heterodyning is achieved
by storing 10 sine/cosine pairs of values in ROM for the 10 different phase angles cor-
responding to every 10 sample points and using these repeatedly as multiplying factors
to be paired with the input data stream. The angular increment between samples is
67T/10. In each succeeding octave the oscillator frequency is reduced by a factor of 2,
but the interval between input samples is increased by a.factor of 2, so that the phase
angles are the same in every octave, and the same 10 sine/cosine pairs are used in the
multiplications in all octaves.

Data Structures

The principal data structures employed in this macro are the input and output data
areas, both in BUFA (the buffer memory connected to channel A); the linkage data,
transmitted from the MCU into the W store; and the working areas, which consist of -
parts of BUFA, BUFB, and the W store. The following subsections describe the assign-
ments for the fixed number of data points (1024) required for the benchmark test.

Buffer Memory A - The 1024 real data values, packed two to a word, with the
earlier point in the left (more significant) half.

Address
No. Content

512- 767
768- 895
896 - 959
960 - 991
992 - 1007

1008 - 1015
1016 - 1019
1020 - 1021

Octave 8 output
Octave 7 output
Octave 6 output
Octave 5 output
Octave 4 output
Octave 3 output
Octave 2 output
Octave 1 output

17

SMITH AND RUSSO

During the execution of the macro, addresses 0 to 255 are written over as temporary
storage for the outputs of the real-channel filters as follows:

Address
No. Content

0 - 255 Decimated output of octave 8/7 real filter
0 - 127 Decimated output of octave 7/6 real filter
0 - 63 Decimated output of octave 6/5 real filter
0 - 31 Decimated output of octave 5/4 real filter
0 - 15 Decimated output of octave 4/3 real filter
0 - 7 Decimated output of octave 3/2 real filter
0 - 3 Decimated output of octave 2/1 real filter

Buffer Memory B -

Address
No. Content

0 - 1023 Demodulator output, octave 8
0 - 511 Demodulator output, octave 7
0 - 255 Demodulator output, octave 6
0 - 127 Demodulator output, octave 5
0 - 63 Demodulator output, octave 4
0 - 31 Demodulator output, octave 3
0 - 15 Demodulator output, octave 2
0 - 7 Demodulator output, octave 1

W Store -

Address
No. Content

0 Control store starting address of OCT
1 Number of input points (end of linkage)
3 Second ROM address of most recently used filter
4 Zero
5 One
6 Latest output address of complex filter
7 Latest input address of real filter
8 Latest output address of real filter
9 Five, initialization value for oscillator phase counter

10 Initialization value for input word counter (offset)

18

NRL REPORT 7831

Coefficient Store -

Address
No.

2049-2050
2051-2052
2053-2054
2055-2056
2057-2058
2059-2060
2061-2062
2063-2064
2065-2066
2067-2068
2069-2070
2071-2072
2073-2074
2075-2076
2077-2078
2079
2080
2081
2082
2083

Content

Complex filter coefficients, octave 8
Real filter coefficients, octave 7
Complex filter coefficients, octave 7
Real filter coefficients, octave 6
Complex filter coefficients, octave 6
Real filter coefficients, octave 5
Complex filter coefficients, octave 5
Real filter coefficients, octave 4
Complex filter coefficients, octave 4
Real filter coefficients, octave 3
Complex filter coefficients, octave 3
Real filter coefficients, octave 2
Complex filter coefficients, octave 2
Real filter coefficients, octave 1
Complex filter coefficients, octave 1
Sine/cosine of 0, 37r/5 rad
Sine/cosine of 67r/5, 97r/5 rad
Sine/cosine of 121T/5, 15iT/5 rad
Sine/cosine of 187l/5, 21r/5 rad
Sine/cosine of 247r/5, 277r/5 rad

Program Description

An understanding of the operation of the program is aided by making reference to
the flowchart of Fig. 10. The left column lists the major elements that may be active
in a SPAU instruction. The right column indicates the content of the instructions that
comprise the program. The first three instructions set the INC registers to one and set
up W(3), W(5), and W(6). The main program is a four-instruction loop that generates
eight subroutine calls and is followed by an interrupt return of control to the MCU.
The remainder of the program contains coding for performing the filtering of real
sequences (RFIL), complex sequences (CFIL), and complex demodulation (DEMOD).
Octave 8 does not require real filtering, so the program enters at DEMOD, where both
buffer addresses are set to zero and the ROM address is set to that of the first of the
sine/cosine coefficients. Consecutive input points are read into X(0) and Y(0) and
multiplied by the 10 successive coefficients. The resulting quadrature sequences are
packed into consecutive words in BUFA, starting at address zero, with the sine com-
ponent in the left (more significant) half, and the cosine component on the right.
Counter K is decremented from five to zero as every five input words (i.e., 10 data
points) are processed. Counter I is set to the number of input words less three (to
accommodate three read operations that occur before the main loop begins). The main
loop of DEMOD occupies addresses 27 through 30. Each pass through the loop

19

SMITH AND RUSSO

ENTER OCT

INIT CONTROL STORE
SET ADDRESS INCRE- LOCATION 8:
MENTS =1
SET ROM ADDRESSPEFR4-OEFL
FOR FIRST FILTER TERFORM 4DATA FROM
COEFFICIENTS TERING ON DATA FROMCOEFFICIENTS / ~~BUFA. DECIMATE DATA \

* \ ~~~~~~~2:11 AND STORE IN/
MAIN BUFA.

/ CALL \ \
DEMOD 2\RI

DEMOD CONTROL STORE
LOCATION 21:

I /M~~~~~~ULTIPLY REALDT\
SET FROM BUFA BY SINE

CTRJ 7 AND COSINE OF OSCIL- J -7 / ~~~LATOR ANGLE FROM \
. < ~~~~~ROM AND STORE AS A

\ PACKED QUADRATURE /
\PAIR IN BUFB./

CONTROL STORE
DECREMENT LOCATION 36:

CTRJ PERFORM 4-P

/TIERING ON QUJADRA_
TURE PAIRS FROM BUFB.

/ DECIMATE 4:1 AND \
F \ { ~~~~~~STORE AS QUADRATURE)

CALL PAIRS IN BUFA, START-
RFIL ING AT ADDRESS 512.

\ RFIL / \ CFIL
CONTROL STORE

(CTRJ = NO ' 2!LOCATION 48:

\<C J t ~~~~~~~ACSAR
RYES

INTERRUPT
F MCU -

Fig. 10 -Octave filter flowchart

20

NRL REPORT 7831

generates a quadrature pair (one 32-bit word in BUFB) for each of four packed data
words that are read in from two consecutive locations in BUFA. The number of points
input should therefore be a multiple of 4.

The beginning of the complex filter CFIL ,overlaps the end of DEMOD to address
the next set of filter coefficients. Sine-channel feedback terms are held in store X at
addresses 1 and 2; cosine-channel terms are at addresses 3 and 4. The roles of X1 and
X2 are reversed in the multiplications in control store addresses 42 through 45. After
a two-clock delay, the multiplier products are available to form the To and OUT terms
of Fig. 9. This is done in the adders, concurrently with the multiplications, starting at
address 40. One complex point is output to BUFA for every four complex points read
in from BUFB. Indexing of the input stream is maintained by CTRI, which is initial-
ized from W(1) without changing W(1), because it will be needed unchanged to index
RFIL. CTRK is used to control the "decimation" from four input points to one output
point. The OUT term for the first member of each pair of input points is not generated,
and for the second number it is selected only on alternate pairs.

Coding for the real filter RFIL is in control store locations 8 through 20, where
it acts as an input filter for successive octaves. The input data are read from BUFA
starting at address 0, and the feedback terms in locations 1 and 2 of the X store are
initially set to 0. The multiplications for the first two-pole module of the filter occur
at locations 11, 14, and either 17 or 18. At 17 a real output point is packed into the
left half of a buffer word using register R3. The following input point is not processed
to give an output, only feedback terms, at location 14. The next input point is packed
into the right half of a buffer word at 18, using register R4. This accomplishes decimation
by a factor of 2, under control of CTRK. The MAIN program loop calls RFIL seven
times, under control of CTRJ, and then returns an interrupt to the MCU. Scaling of the
output data for display purposes is done during the MCU data transfers.

Performance

The program was run using input arrays of 256, 512, and 1024 real points, and the
cumulative number of clock pulses required to process each octave for these arrays is
given in Table 2. A single LPF design (eight coefficients) was used for all the filters;
it has a cutoff frequency at one-half the sampling frequency.

21

SMITH AND RUSSO

Clock Pulses
Table 2

Required for Processing

The benchmark problem, involving 1024 input
equivalent to 2.46 ms.

points, requires 16,422 clock pulses,

Complex Weighting

This program, WGTSUM, creates an array of weighted sums of four complex terms.
Each term is a complex product: one input to this product comes from a coefficient table;
the other input comes from a table that is addressed indirectly using another table. Thus,
three tables in buffer are involved, one containing addresses, the other two data. The
mathematical expression programmed is

4
Yi = E Ci,k XJi+k-1 i = 1, ..., 256

k=1
(19)

where X is the input array, Y is the output array, and Cik is the (4i+k)th entry in the
table of complex coefficients C.

Data Structure

The address of C is in W(4) and C resides in BUFB. J is the Indirect Address Table
(IAT) located in BUFA. Its location is in W(3). X is the data table. Xji is the element
formed by using the ith entry in J as an address. W(2) contains the number of points in
J, assumed to be 256 in this problem. Locations X(1-5) and Y(1-5) are used for input
buffering and temporary storage. Yi, the output value, is written over Ji, the ith location
in J. Thus, the IAT is destroyed by this program. Both X and J reside in BUFA.

22

Number of Input Points

Octave [
256 _ 512 L 1024

1 1,293 2,573 5,133

7 2,717 5,405 10,781

6 3,437 6,829 13,613

5 3,805 7,549 15,037

4 3,997 7,917 15,727

3 4,101 8,109 16,125

2 _ 8,213 16,317

1 16,422

NRL REPORT 7831

Program Description

Tables J and C are addressed sequentially (see Fig. 11). For each value of i, there are
four coefficients Ci,k. For each Ji, one obtains a pointer to a block of four data points
in the X table. For each output Yi, XJi+k- 1 and Ci, k are multiplied and summed over k.
Entries in X and C are complex.

One output is computed for each pass through a six-clock loop LO to L5. Six clocks
are needed for four complex multiplies and the transfer of the indirect address located in
the Ji from BUFA to BARA. W(5) is the local storage that saves the current address of
the BUFA data array.

Because of SPAU hardware design, there is no direct path from the buffer to the W
store; hence, a clock per loop is used to transfer the indirect address word to the Address
Generator.

Performance

A table of 256 elements with a 1024-entry coefficient table took 1543 clocks to
output 256 weighted points, about 1 point per 6 clocks.

Crosscorrelation

This program, XCORREL, performs a beam output crosscorrelation. The values of
,°Qm are to be evaluated for all Q and m values:

SQm(Wk) = Ym(wok)ejwkT 2mXQ(wk) (20)

where

2 = 1, ... ,32,

m= 1, ..., 32,
k= 1, ..., 1024.

The MCU would set up the SPAU for each steering delay; i.e., for each value of 2
and m. The SPAU will implement the crosscorrelation; XCORREL is the solution of Eq.
(20) for one fixed steering delay (i.e., one value each of 9 and m). The solution of Eq.
(20) will be achieved by using the DFT and relying on the fact that translation in time
produces a linear phase shift in the frequency domain.

A 1025-word, 90° ROM may be expected to have 10-bit accuracy case, that is,
where the sinusoids vary linearly. To solve Eq. (20), fix Q and m:

O(wk) = Y(k) X(ok)edwkT. (21)

23

SMITH AND RUSSO

Fig. 11 - Flowchart of WGTSUM (I, K =
indexes in Eq. (19); J1 = Ith entry in J table;
R = register storage)

24

NRL REPORT 7831

MLT is an array multiplication routine, and CONJG conjugates and circularly rotates
data. Program macros and operation will be described.

Data Structure

Because of the number of macros involved, XCORREL has a large number of parameters
in W store. Linkages are in W(O), W(10), and W(11). W(O) contains the LFFT address. The
contents of W(O) will be changed to the exit address in the course of execution. W(10)
contains the exit address, the jump address upon completion. W(11) contains the address
of CONJG. W(3) and W(4) contain the respective addresses of the X and Y arrays. W(12)
contains the rotation amount to be described. W(1), W(2), W(5), W(6), W(8), and W(9)
are storage areas used by LFFT. The setup parameters for LFFT will, of course, specify a
1024-point transform.

Program Description

Arrays X and Y, located in BUFA and BUFB, respectively, input to the MLT routine
where array multiplication is performed (see Fig. 12.) The resultant array is written over
X. A DFT is performed on the resultant array using LFFT.

Transform both sides of Eq. (21) and use the convolution theorem:

f {() = f { YXejwkT}
(22)

= f {YX} *f {ejwkT}

where * indicates convolution and F(}indicates the Fourier transform of a discrete array.
The transform of ejc kT is a Dirac 6 function,

f(p 1= f {YX(t-T)} * (23)

The argument t- T indicates translation in time by T. Solve for sp by taking the inverse
transform of both sides of Eq. (23). The inverse transform may be expressed as follows:

f-1(X(t)} - N (24)

where the factor 1/N is provided for normalization, and the tilde indicates complex
conjugation.

The program for evaluating p relies on LFFT. LFFT is linked to the auxiliary pro-
grams MLT and CONJG. LFFT is used because it computes the DFT via the FFT. The
resultant array is in the time domain. Then CONJG is used to conjugate and "rotate"
the array. "Rotate" means location 1 of ARRAY 1 is written into location n of ARRAY
2, location 2 is written into location n+1, etc.; n is the rotation amount. After the last

25

W

z
e

cI

0)

Fig. 12 - Flowchart of XCORREL. X and Y are local storage. "JUMP R7" is a switch set to exit upon entering CONJG the second time.

NRL REPORT 7831

location (1024) of ARRAY 2 is filled, locations 1 to n- 1 are filled; hence, a circular
rotation of the data results. The circular rotation by n is a time translation by n where
periodically repeating time series are assumed. A shift by n in the time domain series for
a 1024-point transform produces a linear phase shift in the spectrum of n/1024 = T. The
conjugation in CONJG is used to obtain the inverse transform as in Eq. (24). Another
call to LFFT is made, and finally a call is made to CONJG with no circular rotation.

XCORREL, as it stands, is not very good computationally. The reason for this is
that the macro LFFT used in the program is not normalized. If the forward DFT is
defined as

1 n-1
Fm =- Ske-j27rkmI/N, (25)

k=O

then the inverse should be

N-1
Sk = E Fmej2irkm/N. (26)

m=0

In this program, the factor 1/N also appears in the inverse transform definition. A
change in SPAU design, the latching of the right shift of the input from BUFFER, makes
possible proper scaling on the inverse DFT. This change was not present in the version
of the SPAU simulator on which XCORREL was run, but was introduced in subsequent
versions.

Performance

XCORREL was not run for 1024-point arrays. The number of clocks should be (2
log2 N+4)N+140 to within 30 clocks. For 1024 points, this would be 24,716 clocks, very
expensive to run. For 128-point arrays, 2,418 clocks were used in a simulation.

SUMMARY OF SPAU PERFORMANCE

The LFFT and REFFT benchmarks were run for several different sizes of data arrays.
These results, together with those of the other benchmarks, are summarized in Table 3.
The elasped real time is shown based on an assumption of 150 ns for the period of one
clock cycle.

27

SMITH AND RUSSO

Table 3
Time for SPAU Performance

LFFT (points):

32 192 0.0288

64 423 0.0635

128 941 0.141

256 2,100 0.315

512 4,668 0.700

1024 10,307 1.547

4096 49,250 7.388

REFFT (points):

64 365 0.0547

128 757 0.114

256 1,594 0.239

512 3,393 0.508

1024 7,241 1.088

OCT (1024 points) 16,422 2.46

WGTSUM (256 points) 1,543 0.225

Crosscorrelation:

128 points, 1 beam, 1 channel 2,418 0.363

1024 points, 1 beam, 1 channel 24,716 3.707

DESIGN FEEDBACK

The coding of the benchmark programs gave rise to several significant changes in the
design of the SPAU from that described in an earlier report [1]. The major changes were
the following:

1. Changing the right-shift control on the channel inputs from a momentary
instruction-by-instruction shift to a latched shift, which remains in effect indefinitely after
it is set

2. Changing from a local overflow test on A5 to a global magnitude test so that
potential overflows can be anticipated and the data can be scaled down to prevent overflow
from occurring

28

Program No. of Clocks Time (Ms)

NRL REPORT 7831

3. Changing the Y store Read and Write control from increment to indirect
addressing from the ROM Address Register (RAR), and applying this addressing to the
X and W stores as well

4. Separating the buffer-identifying bits (the high-order bits) from the 12 low-order
bits of each buffer address register so that buffer identifications may be swapped or held
fixed while the low-order bits are incremented modulo 212

5. Adding two more adders, for a total of six, in the arithmetic section of the model
XB-2 SPAU to support a radix-4 FFT algorithm. By making half as many buffer accesses,
the radix-4 algorithm completes an FFT in half the time required by the radix 2 algorithm.
Design changes 1 through 4 were reflected in the SPE software described in Ref. 8.

Other design changes were made, as may be observed by comparing the SPAU descriptions
given in previous reports [1,9].

REFERENCES

1. W.R. Smith and H.H. Smith, "Signal Processing Element Functional Description,"
Part 2, (Preliminary) Signal Processing Arithmetic Unit," NRL Memorandum Report,
2522, Oct. 1972.

2. H.S. Elovitz, "Microprogrammed Benchmarks for the AN/UYK-17(XB-1) (V) Micro-
programmed Control Unit (MCU)," NRL Report 7732, in preparation.

3. "What is the Fast Fourier Transform?," G-AE Subcommittee on Measurement Con-
cepts, IEEE Trans. AU-15, No 2, (June 1967).

4. "On Digital Filtering," G-AE Concepts Subcommittee, IEEE Trans. AU-16, No. 3,
303-314 (Sept. 1968).

5. G.M. Jenkins and D.G. Watts, Spectral Analysis and A;; Applications, Holden-Day,
Inc., San Francisco, 1968.

6. M.C. Pease, "An Adaptation of the Fast Fourier Transform for Parallel Processing,"
J. Assoc. Comput. Mach. 15, 252-264 (Apr. 1968).

7. J.C. Stringer, "Fast Fourier Transform on the ASC,"TI ASC Internal Report, Job
No. 2205-1, "Texas Instruments, Feb. 1973.

8. T.G. Rauscher, J.D. Roberts, Jr., and W.D. Elliott, "AN/UYK-17 Signal Processing
Element Microcoding Support Software," NRL Report 7777, Nov. 1974.

9. W.R. Smith, J.P. Ihnat, H.H. Smith, N.M. Head, Jr., E. Freeman, Y.S. Wu, and B.
Wald, "AN/UYK-17 (XB-1) (V) Signal Processing Element Architecture, NRL Report
7704, June 7, 1974.

29

Appendix A

BENCHMARK SPECIFICATIONS

INTRODUCTION

A group of processing functions has been selected as a representative sample of the
operations to be carried out on the PROTEUS Analyzer and are presented here as bench-
mark problems. Each problem stresses one or more of the major analyzer capabilities
(arithmetic operations, logic operations, and general data handling operations).

The results of these sample problems will be used in evaluating running times and
overall capabilities of the proposed analyzer. In some instances the timing and storage
performance for a particular problem will be used to project overall performance for that
class of problem. The responses to these problems should be in a separate enclosure
from the responses to the main body of the specification.

GUIDELINES

Problems should be implemented as if they were to be called from an overall
executive routine or, if indicated, from some previous routine or via an interrupt. In
either case, the implementation should include storage of "working registers" and any
other overhead functions such as initializing tables, reformatting input or output data,
and setting up I/O buffers.

The hardware and software configuraitons used for the benchmark problems must
be identical to those proposed for the actual system, unless specified otherwise.

The solutions to the problems must be carried out using the problem organization
that is defined. The contractor may redefine or redesign any of the problems (assuming
the same tasks are accomplished) if the modification results in a specific advantage for
his machine. The modifications must be documented in detail, and the resulting
advantages must be demonstrated.

FUNCTION BENCHMARKS

Levels of Response

Two levels of response will be considered.

Minimum Required Response - The following response is required for each of the
functional benchmark problems.

1. A detailed flow diagram of the program at the instruction level and a prose
description of the solution

30

NRL REPORT 7831

2. The overall problem execution time. Memory access time and individual
instruction execution times should be itemized. Time required for any overhead functions
shall be included.

3. Storage allocation in terms of total storage used and percentage of storage
available for each of the program, data, coefficient and microprogram memories,

4. A symbolic instruction listing in the analyzer language with comments

5. A definition of each instruction (or each statement at each language level, if
more than one level is used)

6. Execution times for each equation major loop or program segment

7. A detailed description of each special instruction or macro, including its purpose

8. Microprogram assembly and simulation, including (a) translation of the micro-
instruction source language into the pattern of control bits to be used in a microprogram
memory (All translator documentation outputs shall be provided.), and (b) simulation
of the microprogram on a general-purpose computer. (This simulation should produce
statistics on the execution of the microprogram, such as control memory size, timing, etc.)

9. Program assembly and simulation, including (a) assembly of the source code
with all assembler outputs, and (b) simulation of the program on a general-purpose compu-
ter. (This simulation should produce statistics on the execution of the program, such as
memory use and timing.)

10. The name or names of contractor personnel who can be contacted for answers
to any questions of a technical nature regarding the method of problem solution.

Optional Responses - The contractor may wish to present his capabilities by
executing the program on analyzer hardware, interfaced with a general-purpose computer
to provide statistics and input/output capabilities. This response is not mandatory but
is desirable to help evaluate the current state of system development.

Function Benchmark Problems

1. Data Array Demultiplexing - A 3200-point array consisting of 25 channels of
time-multiplexed complex data (packed one complex sample per 32-bit memory word)
(Fig. Ala) shall be demultiplexed into 25 arrays of 128 complex points each (Fig. Alb).
The input data shall have previously been located in bulk memory, and the output shall
result in 25 contiguous arrays in bulk memory.

2. Data Array Demultiplexing - Follow the steps of benchmark 1, assuming a
32,768-point input array consisting of 32 channels of time-multiplexed real data with
8-bit precision.

31

SMITH AND RUSSO

A. Input Array

Channel

1

2

3

25

1

2

3

25

1

2

3

25

B. Output Array

Sample

1

2

1

1

2

2

2

2

128

128

128

128

Word

1

2

3

128

129

130

131

256

3073

3074

3075

3200

Channel

1

1

1

1

2

2

2

2

25

25

25

25

Fig. Al - Array demultiplexing input and output arrays

32

Word

1

2

3

25

26

27

28

50

3176

3177

3178

3200

Sample

1

2

3

128

1

2

3

128

1

2

3

128

NRL REPORT 7831

2. Data Array Demultiplexing - Follow the steps of benchmark 1, assuming a
32,768-point input array consisting of 32 channels of time-multiplexed real data with 8-bit
precision.

3. Complex Fast Fourier Transform - The input data consists of 4096 complex
values residing in bulk memory (packed one 32-bit word per complex sample). A 4096-
point complex FFT shall be performed on the input data, and the results shall be returned
to the same area of bulk memory that contained the input data.

4. Real Fast Fourier Transform - The input data consists of 1024-point real
values, with 8-bit precision, residing in bulk memory. A 1024-point FFT shall be per-
formed on the input data, and results shall be returned to a different area of bulk memory
(packed one 32-bit word per complex sample).

5. Data Array Demultiplexing and FFT - Combine benchmarks 2 and 4 and
perform FFT on 32 channels of time-multiplexed real data.

6. Weighting Function With Irregular Addressing - Apply a weighting function to
an input data array using a predefined irregular addressing pattern on the input. This type
of weighting function is used in forming constant-percentage resolution filters from con-
stant-resolution FFT outputs. The input data will consist of an array of 1024 complex
values formatted as shown in Fig. A2 and stored in bulk memory.

16 Bits 16 Bits

Word 1 | Real Part | Imaginary Part

Word 2 Real Part | Imaginary Part

Word 3 Real Part Imaginary Part

Word 1024 Real Part Imaginary Part

Fig. A2 - Input'data array

The output will be an array of 512 complex values stored in bulk memoryin the
same format as the input data. The algorithm to be carried out is given by

4

Yi = jj Ci,k XJi + k - 1 = 1, 2, ... , 512

k = I

where Yi is the ith complex output value.

The C4k are the complex weighting factors stored in bulk memory as specified in
Fig. A3.

33

SMITH AND RUSSO

16 Bits 16 Bits

Real Part Imaginary Part

Real Part Imaginary Part

Real Part Imaginary Part

Real Part Imaginary Part

Real Part Imaginary Part

Real Part Imaginary Part

Real Part Imaginary Part

Fig. A3 - The Cik weighting factors as start in bulk memory

The Xji + k - 1 are the four consecutive complex inputs used to form the ith output.
Jj is defined in Table Al.

Table Al
Definitions XJi

Ji i Ji i Ji i Ji

1 1 23 30 45 61 67 93

2 2 24 31 46 63 68 95

3 3 25 32 47 65 69 96

4 4 26 34 48 66 70 97

5 6 27 35 49 68 71 99

6 7 28 37 50 69 72 100

7 8 29 38 51 70 *73 102

8 9 30 39 52 72 74 -103

9 10 31 42 53 73 75 105

34

C1 , 1

Cl 2

C1,3

ClA

C2' 1

C2 ,2

C 512

NRL REPORT 7831

Table Al (Cont'd)

i Ji al i Ji l i Ji al i Ji |

10 12 32 43 54 75 76 106

11 13 33 44 55 76 77 108

12 14 34 45 56 77 78 109

13 16 35 48 57 79 79 111

14 17 36 49 58 80 80 112

15 18 37 51 59 82 81 114

16 19 38 52 60 83 82 115

17 22 39 54 61 85 83 117

18 23 40 55 62 86 84 118

19 25 41 56 63 87 85 119

20 26 42 57 64 89 86 121

21 27 43 59 65 90 87 122

22 29 44 60 66 92 88 124

89 125 109 153 131 184 153 219

90 126 110 155 132 186 154 223

91 128 111 156 133 187 155 224

92 129 112 158 134 188 156 227

93 131 113 159 135 191 157 229

94 132 114 160 136 192 158 231

95 133 115 162 137 194 159 233

96 135 116 163 138 195 160 236

97 136 117 165 139 197 161 238
11 B .

35

SMITH AND RUSSO

Table Al (Cont'd)

i Ji 1l i Ji l i J i i Ji

98 138 118 166 140 199 162 241

99 139 119 167 141 201 163 243

100 140 120 169 142 202 164 246

101 142 121 170 143 204 165 248

102 143 122 172 144 205 166 250

103 145 123 173 145 207 167 253

104 146 124 174 146 209 16 255

105 147 125 176 147 210 169 258

106 149 126 177 148 211 170 261

107 151 127 178 149 213 171 265

108 152 128 180 150 215 172 267

175 276 129 181 151 216 173 269

176 279 130 183 152 218 174 273

177 281 197 343 219 407 241 466

178 284 198 345 220 409 242 469

179 287 199 348 221 413 243 471

180 291 200 352 222 416 244 473

181 294 201 356 223 419 245 476

182 297 202 358 224 421 246 478

183 299 20i 361 225 424 247 480

184 303 204 364 226 426 248 483

185 307 205 367 227 429 249 485
E I ..

36

NRL REPORT 7831

Table Al (Cont'd)

Ji i Ji i Ji i Ji

186 310 206 371 228 431 250 487

187 313 207 373 229 434 251 491

188 316 208 375 230 436 252 493

189 319 209 378 231 439 253 496

190 322 210 380 232 441 254 500

191 326 211 384 233 444 255 504

192 329 212 387 234 447 256 508

193 332 213 389 235 450

194 335 214 392 236 454

195 337 215 395 237 457

196 339 216 399 238 459

217 403 239 461

218 405 240 463

7. Complex Demodulation and Octave Filtering - The input will consist of a 1024-
point real data array, packed as four 8-bit samples to a 32-bit memory word, residing in
bulk memory (Fig. A4). The contractor will perform complex demodulation and octave
filtering with decimation and scaling to form eight continguous 1-octave bands. A func-
tional flowchart of the operations to be performed is presented in Fig. A5. All filters will
be 4-pole, 4-zero recursive filters with nontrivial coefficients. The output shall be stored
in bulk memory as eight separate arrays with one 32-bit complex output per word. All
coefficients and results will be 16 bits for each of the real and imaginary parts.

37

SMITH AND RUSSO

Word Real Sample

Word 1 | 1 2 | 3 | 4

Word 2 | 5 | 6 | 7 | 8 l

Word 3 1 9 l 10 I 11 1 12 l

Word 256 1021 11022 1023 1024 |

Fig. A4 - Contents of 1024-bit real data array

38

NRL REPORT 7831

BULK MEMORY

, 2

COS wot

BULK MEMORY
OCTAVE 8

Cos 52t

OCTAVE 7

. 2

COMPLEX DEMODULATION AND OCTAVE FILTERING

Fig. A5 - Complex demodulation and octave filtering

39

SMITH AND RUSSO

8. Complex Demodulation and Octave Filtering - Combine benchmarks 2 and 7
and perform complex demodulation and octave filtering on 32 channels of time-multi-
plexed real data.

9. Demultiplexing, Octave Filtering, and FFT - Follow the steps of benchmark 8
and then perform FFT on all channels and all octaves. The frequency domain output
shall be stored in bulk memory packed one 32-bit complex output per word.

10. Beam Forming - Perform delay-sum beam forming on time-multiplexed input
array as defined in benchmark 2, using the following formula:

32

Yj (tk)= E WijXi(tk - Tij)

i = 1,

where

Xi(tk) = ith input channel, Kth time sample

Yj(tk) = jth beam output, Kth time sample

Tij = steering delay

Wij = arbitrary scale factor

i =1, ..., 32; j = 1, ..., 32; K= 1, ..., 1024.

Wij and Tij shall be a 1024-word (each word has 16 bits) stored table with 10-bit relative
table address defined by ij such that the storage content of the table address ij has the
following format:

Wij Tij

0 78 15

The 32-beam output arrays shall be in contiguous time samples packed four 8-bit samples
per 32-bit word and stored in bulk memory.

11. Beam Forming and Octave Filtering - Combine benchmarks 7 and 10 and
perform complex demodulation and octave filtering on 32 beams.

12. Beam Forming, Octave Filtering, and FFT - Follow the steps of benchmark
11 and then perform FFT on all beams and all octaves. The frequency domain output
shall be stored in bulk memory packed one 32-bit complex output per word.

13. Sensor-Input, Beam-Output Cross-Correlation - Compute the following cross-
correlation function:

40

NRL REPORT 7831

4'Qm(Wk) = Ym(Ck)eiwkTQmXQ(wk)

where

Ym (wk) = mth beam, Kth frequency

ejc k T2m = complex spatial term with respect to TQm

TQ m = steering delay

X (CO k) = fth input channel, Kth frequency sample

£ = 1, ... ,32; m = 1, ... , 32; K = 1, ... , 1024.

(XQ) and (YQ) are packed, 32-bit complex words stored in the bulk memory. Com-
putations of { ejW k T22 m} should be carried in at least 8-bit real and imaginary parts of a
complex number. (1lDm) output shall be stored in bulk memory packed in 16-bit words
(8-bit real and imaginary). It is acknowledged that the proposed basic analyzer unit
configuration may not have sufficient bulk storage to execute this benchmark program.
However, computer simulation of this program should adequately demonstrate the bulk
memory expansion capability, dynamic paging and overlaying between bulk memory and
the analyzer unit, and overall system throughput.

14. Gram Thresholding and Formatting - The input will be an array of 256 real
data points (specified in Table 2) representing the outputs of the STI processor, as
specified. The input data shall be stored in bulk memory as two 16-bit values per data
word. The problem is to quantize the STI outputs by computing a moving window noise
mean for each input data point and use the noise mean to threshold the data to a 2-bit
amplitude. The algorithm to be used is defined in the specification, with the following
parameter definitions:

W = 32

Kcs = (specified by user)

Krs = (specified by user)

N = 256

K1 = (specified by user)

K2 = (specified by user)

K3 = . (specified by user)

The output shall be 128 values packed as sixteen 2-bit amplitudes formatted into eight
32-bit words and returned to bulk memory as shown in Fig. A6.

41

SMITH AND RUSSO

Word Output Array

1 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y161

21 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29 Y30 Y31 Y32|

8 VY113 Y1 27 Y128 1

Fig. A6 - Output array for gram thresholding and formatting

15. Bearing Computation (DIFAR) - The input to the bearing computation shall
consist of two arrays, each of 1024 points, in bulk memory, representing 2048 points
of the sine and cosine channels, respectively, after LTI. The format of the input data
shall be as in Fig. A7. The algorithm shall be as specified. The output shall be a 512-
point array consisting of four 8-bit bearing outputs per 32-bit word in bulk memory.
The format of the output shall be as shown in Fig. A8.

Word 1 North 1 North 2
Word 2 North 3 North 4

Word 1024 North 2047 North 2048
Word 1025 East 1 East 2
Word 1026 East 3 East 4

Word 2048 East 2047 East 2048

Fig. A7 - Input format for bearing calculation

Word 1 Bearing 1 Bearing 2 Bearing 3 Bearing 4

Word 2 Bearing 5 Bearing 6 Bearing 7 Bearing 8

Word 512 Bearing 2045 Bearing 2046 | Bearing 2047 1 Bearing 2048

Fig. A8 - Output format for bearing calculation

42

NRL REPORT 7831

GLOSSARY

ACSR - Alternate Control Store Address Register

AMIL - A Microprogramming Language

BSM - Buffer Storage Modules

FFT - Fast Fourier Transform

FSCR - Field Select Control Register

FSDR - Field Select Data Register

FSU - Field Select Unit

MCU - Microprogrammed Control Unit

SCC - Selector Channel Controller

SPAU - Signal Processing Arithmetic Unit

SPE - Signal Processing Element

43

Appendix B

PROGRAM LISTINGS

SPAU MICROPROGRAMMING LANGUAGE

The program listings that follow are expressed in a symbolic language dubbed ANIMIL
(ANother Interesting MIcroprogramming Language).t Individual microinstructions may
occupy several lines on the listing; blanks and the ends of physical lines have no logical
significance. Each microinstruction, which may be labeled to facilitate symbolic addressing,
consists of subcommands that reference specific SPAU facilities and indicate actions the
SPAU is to take. A sharp or number sign (#) must be used to separate a label from its
microinstruction. The end of a microinstruction is indicated by a dollar sign. Subcom-
mands are separated by semicolons, and they may appear in any order. Comments are
strings of characters, including physical ends of lines, which are initiated and terminated
by double quotation marks. Comments may appear anywhere except within comments.

REGISTERS

The following is a list of the single registers:

ACSAR
BARA
BARB
CTRI
CTRJ
CTRK
INCA
INCB
INCR
P1
P2
P3

P4
R1
R2
R3
R4
R7
RAR
zi
Z2
Z3
Z4

The array registers are COND (subscript), W (subscript), X1 (subscript), X2 (sub-
script), Y1 (subscript), and Y2 (subscript). The subscript for array registers other than
the W array may range from 0 to 15. The W array has a range of 0 to 31. Ranges of

tT.G. Rauscher, J.D. Roberts, Jr., and W.D. Elliott, "AN/UYK-17(XB-1) (V) Signal Processing Element
Microcoding Support Software," NRL Report 7777, Nov. 1974.

44

NRL REPORT 7831

subscripts for array registers may be written as follows:

subscript - subscript

For example, X1(3-5). The elements of the COND array correspond to 16 SPAU con-
ditions for branching.

BUFA and BUFB (half word number [-half word number]) are two memory registers.
Buffer references are to half words (16 bits), not to full words (32 bits). Even-numbered
half words starting with zero refer to the low-order 16 bits in consecutive words. The
half words in each buffer are referenced 0-2047. The other memory register is ROM (word
number [-word number]). ROM word numbers range from 0 to 2047. The first 1025
ROM words contain two 16-bit coefficients that are the sine and cosine of angles between
0 and 7r/2 at intervals of ir/2048. These sine and cosine coefficients may not be altered.
When read into the Z registers, the first (sine) coefficient is put into Z1 and the second
(cosine) coefficient is put into Z2. The remaining 1023 coefficient store words contain
four 16-bit coefficients that may be changed under microprogram control. When read
into Z registers, the leftmost (first) coefficient is put into Z1, the second coefficient is
put into Z2, etc. Unlike other facilities, each reference to ROM indicates either two values
(if the address is less than or equal to 1025) or four values (if the address is greater than
1025).

SPAU PROGRAMS

ANIMIL listings* for benchmark programs are given in the following pages.

*T.G. Rauscher, J.D. Roberts, Jr., and W.D. Elliott, "AN/UYK-17(XB-1) (V) Signal Processing Element
Microcoding Support Software," NRL Report 7777, Nov. 1974.

45

SMITH AND RUSSO

73/03/07. 15.46.01.
PROGRAM LFFT

" SPAU PROGRAM 'LFFT'

W(I)=N/2 W(2)=LOG2(N) W(3)= DATA ADDRESS W(4)= RESULT ADDRESS
X(5)&CTRK=BUTTERFLIES PER HALF GROUP

th(6)&CTRJ=GROUPS PER STAGE
CTRI=STAGE W(S)=ROM INCREMENT W(9)=l

LO# A6:BARB=INCB; A7:RAR=LIT+INCR; A5:INCA=W(l); CTRJ=W(I)$

LIl. A5:BARA=W(3); A6:INCB=BARB-INCB; A7:RAR=RAR-INCRS

L2# A5:BARA=BARA+INCA; A6:INCB=LIT+INCB; LIT=I; CTRK=LIT; W(5)=A6$

L3# A5:BARA=BARA-INCA; X(l)=RSHBUFA; Z=ROM$
"READ ROM ONLY THIS ONCE IN STAGE 1."

L4# M1:X2(1)*Fl; A5:BARA=BARA+INCA+I; A6:INCB=LIT-INC8; Y(l)=RSHBUFA;
W(6)=CTRJ$

"START STAGE I PIPELINE HERE."

L5# Ml:X2(1)*1ZI; A5:BARA=BARA-INCA; X(2)=RSHBUFA; CTRI=W(2); DECJ$

L6# MI:X2(2)*z1; A5:BARA=BARA+INCA+I; A6:BARB=WC4); Y(2)=RSHBUFA; DECJi
Al:RI=PlI+P2; A2:R2=Yl(l)+Al; A3:R3=P3-P4; A4:R4-Y2(1)+A3S

L7# Ml:X2(2)*;zl A5:BARA=fiARA-INCA; A6:BARB=BARB-INCB; A7:LIT;
LIT=I; X(l)=RSHBUFA; BUFB=R2R4; Al:RI=Y1(1)-RI; A3:R3=Y2(1)-R3;
DECJj W(9)=A7$

"STAGE I LOOPS HERE FROM L1O."

LS# MI:X2(1)*Zl; A5:BARA=BARA+INCA+I; A6:bARB=bARb-INCB; Y(l)=RSHBUFA;
BUFB=RlR3; Al:RI=PI+P2; A2:R2=Y1(2)+Al; A3:R3=P3-PA;
A4:R4=Y2(2)+A3$

L9# Ml:X2(1)*El; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB; X(2)=RSHBUFA;
BUFB=R2R4; Al:RI=YI(2)-RI; A3:R3=Y2(2)-R3; DECJ; A7:INCR=LIT;
LIT=-1024; W(S)=A7$

"SET INCR TO BE ABLE TO READ ROM AT 0 DEGREES (RAR=0)
AND AT 180 DEGREES (RAR=1024) IN STAGE 2."

L1O# Ml:X2(2)*il; A5:BARA=BARA+INCA+lI A6:BARB=BARB-INCB; Y(2)=RSHBUFA;
BUFB=RIR3; Al:RI=Pl+P2; A2:R2=YI(l)+AI; A3:R3=P3-P4;
A4:R4=Y2(1)+A3; IF NOT CTRJ THEN GO TO L7$

Lll# Ml:X2(2)*-I; A5:BARA=W(4); A6:BARB=HARB-INCB; BUFB=R2R4;
Al:RI=Yl(1)-Rl; A3:R3=Y2(1)-R3$

46

NRL REPORT 7831

L12# A5:BARA=BARA+INCA; A6:BARB=BARB-INCB; A7:LIT+RSHW(6); BUFB=RIR3;
AI:RI=Pl+P2; A2:R2=YI(2)+Al; A3:R3=P3-P4; A4:R4=Y2(2)+A3; W(6)=A7;
CTRJ=RSHW(6) S

L13# A6:BARB=BARB-INCB; BUFB=R2R4; Al:RI=Yl(2)-RI; A3:R3=Y2(2)-R3;
DECIS

L14# BUFB=RIR3; SWAP$

L15# A5:BARA=BARA-INCA; A6:INCB=LIT-LSHW(5); X(I)=RSHBUFA; Z=ROM$

L16# Ml:X2CI)*FI; A5:BARA=BARA+INCA+l; A7:RAR=RAR-INCR;
Y(1)=RSHBUFAS

"START STAGE 2 PIPELINE HERE."

L17# Mi:X2(1)*Zl; A5:BARA=BARA-INCA; X(2)=RSHBUFA;
Z=ROM$

LI8# Ml:X2(2)*Zl; A5:BARA=BARA+INCA+I; A6:BARB=W(4);
A7:RAR=RAR+INCR; Y(2)=RSHBUFA; AI:RI=Pl+P2; A3:R3=P3-P4;
A2:R2=YlCl)+Al; A4:R4=Y2(1)+A3; DECJ$

L19# Ml:X2(2)*Zl; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB; X(l)=RSHBUFA;
BUFB=R2R4; Z=ROM; Al:RI=Yl(l)-RI; A3:R3=Y2(1)-R3$

-STAGE 2 LOOPS HERE FROM L22."

L20# Ml:X2(1)*Zl; A5:BARA=BARA+INCA+I; A6:BARB=BARB+INCB+I;
A7:RAR=RAR-INCR; Y(I)=RSHBUFA; BUFB=RIR3; Al:RI=PI+P2; A2:R2=YI(2)+Al.
A3:R3=P3-P4; A4:R4=Y2(2)+A3S

"INCREMENT RAR UP TO 1024."

L21# Ml:X2(1)*Z1: A5:BARA=BARA-INCA; A6:bARB=BARB-INCB; X(2)=RSHBUFA;
BUFB=R2PR4; Al:RI=YI(2)-RI; A3:R3=Y2(2)-R3;DECJ; E=ROM$

L22# MI:X2(2)*Zl; A5:BARA=BARA+INCA+I; A6:BARB=BARB+W(9); Y(2)=RSHBUFA;
A7:RAR=RAR+INCR; BUFB=RIR3; Al:Rl=Pl+P2; A2:R2=YI(l)+Al;
A3:R3=P3-P4; A4:R4=Y2(1)+A3; IF NOT CTRJ THEN GO TO L19S

"DECREMENT RAR BACK TO 0."

L23# Ml:X2(2)*Zl; A5:BARA=W(4); A6:BARB=BARB-INCB; BUFB=R2R4;
Al:RI=Yl(l)-RI; A3:R3=Y2(1)-R3S

L24# A6:bARB=BARB+INCB+I; A5:LIT+RSHW(6); CTRJ=RSHWI(6); W(6)=A5;
BUFB=RIR3; Al:RI=Pl+P2; A2:R2=YI(2)+Al; A3:R3=P3-P4; A4:R4=Y2(2)+A3$

L25# A6:BARB=BARB-INCB;
BUFB=R2R4; DECI; AI:RI=Yl(2)-RI; A3:R3=Y2(2)-R3$

L26# A5:BARA=BARA+INCA; A6:BARB=LIT+INCB; W(5)=A7; BUFB=R1R3;
CTRK=LSHW(5); SWAP; A7:LIT+LSHW(5)$

1 47

SMITH AND RUSSO

L27# A5:BARA=BARA-INCA; A6:INCB=BARB+INCB; XCl)=RSHBUFA; Z=ROM;
A7:INCR=LIT+RSHW(8); W(S)=A7$

L28# Ml:X2(1)*El; A5:BARA=BARA+INCA+1; A6:BAR8=LIT+W(4);
A7:RAR=RAR-INCR; Y(15=RSHBUFA; LIT=-I; DECKS

"START GENERAL STAGE HERE."

L29# Ml:X2(1)*El; A5:BARA=BARA-INCA; X(2)=RSHBUFA; E=ROM; DECKS

L30# Ml:X2(2)*Els A5:BARA=BARA+INCA+1; A7:RAR=RAR-INCR; Y(2)=RSHBUFA;
AI:RI=Pl+P2; A2:R2=Yl(l)+Al; A3:R3=P3-P4; A4:R4=Y2(1)+A3; IF CTRK
THEN GO TO L50; A6:BARB=BARB+W(9)$

"IF CTRK=0 THEN THIS IS STAGE 3 (THERE ARE TWO
BUTTERFLIES PER HALF GROUP)."

L31# Ml:X2(2)*Zl; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB3
X(l)=RSHBUFA; BUFB=R2R4; E=ROM; Al:Rl=YI(l)-Rl; A3:R3=Y2(1)-R3$

"ACUTE ANGLE (FIRST) HALF OF GENERAL-STAGE LOOPS
HERE FROM L34."

L32# Ml:X2(1)*ZI; A5:BARA=BARA+INCA+I; A6:BARB=BARB+INCB+1;
A7:RAR=RAR-INCR; YCl)=RSHBUFA; BUFB=RIR3; DECK; AI:Rl=Pl+P2;
A2:R2=Y1(2)+Al; A3:R3=P3-P4; A4:R4=Y2(2)+A3$

L33# MI:X2(1)*Zl; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB;
X(2)=RSHBUFA; BUFB=R2RA; DECK; E=ROM; Al:RI=YI(2)-Rl;
A3:R3=Y2(2)-R3$

L34# Ml:X2(2)*F1; A5:BARA=BARA+INCA+1; A6:BARB=BARB+INCB+1;
A7:RAR=RAR-INCRI Y(2)=RSHBUFA; BUFB=RIR3; Al:Rl=PI+P2;
A2:R2=YII)+AI; A3:R3=P3-P4; A4:RA=Y2(1)+A3; IF NOT CTRK
THEN GO TO L31$

L35# Ml:X2(2)*Zl; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB;
X(1)=RSHBUFA; BUFB=R2R4; CTRK=W(5); Z=ROM; Al:Rl=Yl(l)-RI;
A3:R3=Y2(1)-R3$

"BEGIN TRANSIT TO SECOND HALF OF GENERAL STAGE."

L36# MI:X2(1)*El; A5:BARA=BARA+INCA+I;
A6:BARB=BARB+INCb+l; A7:RAR=RAR+INCR; Y(l)=RSHBUFA;
BUFB=RIR3; DECK; AI:RI=PI+P2; A2:R2=YI(2)+AI; A3:R3=P3-P4;
A4:R4=Y2(2)+A3$

L37# Ml:X2(1)*El; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB;
XC2)=RSHBUFA; BUFB=R2R4; DECK; Z=ROM; Al:RI=Yl(2)-RI;
A3:R3=Y2(2)-R3$

L38# Ml:X2(2)*E1; A5:BARA=BARA+INCA+1;
A6:BARB=BARB+INCB+I; A7:RAR=RAR+INCR; Y(2)=RSHBUFA; BUFB=R1R3;
Al:RI=PI-P2; A2:R2=YI(l)+Al; A3:R3=P3+P4; A4:R4=Y2(l)-A3$

48

NRL REPORT 7831

L39# Ml:X2(2)*zl; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB; DECK;
X(I)=RSHBUFA; BUFB=R2R4; E=ROMJ A1:R1=Yl(1)-RI; A3:R3=Y2(1)+R3$

"OBTUSE ANGLE (SECOND) HALF OF GENERAL STAGE LOOPS
HERE FROM L42."

L40# Ml.ZX2(1)*;1; A5:BARA=BARA+INCA+1; A6:BAR8=BARB+INCB+l;
A7:RAR=RAR+INCR; Y(1)=RSHBUFA; BUFB=R1R3;
Al:R1=P1-P2; A2:R2=Y1(2)+Al; A3:R3=P3+PA; A4:R4=Y2(2)-A3$

L41# M1:X2(1)*Zl; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB;
X(2)=RSHBUFA; BUFB=R2R4; DECK; Z=ROM; A1:RI=Y1(2)-R1;
A3:R3=Y2(2)+R3$

L42# Ml:X2(2)*Fl; A5:BARA=BARA+INCA+1; A6:BARB=BARB+INCB+1;
BUFB=R1R3; Al:RI=P1-P2; A2:R2=YICl)+Al; A3:R3=P3+P4;
A4:R4=Y2(1)-A3; A7:RAR=RAR+INCR; IF NOT CTRK THEN GO TO L393
Y(2)=RSHBUFAS

L43# Ml:X2(2)*Z1; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB; Z=ROM;
X(I)=RSHBUFA; BUFB=R2R4; CTRK=W(5); DECJ; Al:R1=Y1(l)-R1;
A3:R3=Y2(1)+R3S

L44# Ml:X2(1)*71; A5:BARA=BARA+INCA+I; A6:BARB=BARB+INCB+I;
A7:RAR=RAR-INCR; Y(l)=RSHBUFA; BUFB=RIR3; A1:Rl=P1-P2;
A2:R2=Y1(2)+Al; A3:R3=P3+P4; A4:R4=Y2(2)-A3; DECK$

L45# Ml:X2(l)*Zl; A5:BARA=BARA-INCA; A6:BARB=BARB-INCh; Z=ROM;
BUFB=R2R4; Al:RI=Y1(2)-R1; A3:R3=Y2(2)+R3; DECK; X(2)=RSHBUFA;
ACSAR=LIT; LIT=L59$

L46# Ml:X2(2)*Zl; A5:BARA=BARA+INCA+I; Y(2)=RSHBUFA; A7:RAR=RAR-INCR;
Al:R1=Pl+P2; A2:R2=Yi(l)+Al; A3:R3=P3-P4; AA:RA=Y2(1)+A3;BUFB=RIR3;
A6:BARB=BARB+W(9); IF NOT CTRJ THEN GO TO L31$

L47# A5:BARA=W(4); A7:RAR=LIT; DECI; SWAP$

L48# A5:BARA=BARA+INCA; A6:RSHW(6); W(6)=A6; CTRJ=RSHW(6); IF
CTRI THEN GO TO ACSAR; A7:R7=LII; LIT=L27S

"THE FIRST TIME HERE ACSAR CONTAINS L48 IT WILL BE
RESET LATER AT L45."

L49# A5:LSHW(5); W(5)=A5; CTRK=LSHW(5); GO TO R7; A6:BARB=LIT+INCBS
"STAGE 3 CONTINUES HERE, AND ALSO LOOPS HERE

FROM L57."

L50# Ml:X2(2)*E1; A5:BARA=bARA-INCA; A6:BARB=BARB-INCB; Z=ROM;
X(1)=RSHBUFA; BUFB=R2R4; Al:Rl=Y1(1)-R1; A3:R3=Y2(1)-R3$

49

SMITH AND RUSSO

L51# Ml:X2(1)*Z1; A5:BARA=BARA+INCA+I; A6:BARB=BARB+INCB+1;
A7:RAR=PRAR+INCR;
YC1)=RSHBUFA; BUFB=RIR3; Al:Rl=Pl+P2; A2:R2=YIC2)+AI;
A3iR3=P3-P4; A4:R4=Y2(2)+A3S

L52# M1:X2(1)*E1; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB; E=ROM;
X(2)=RSHBUFA; BUFB=R2R4; Al:RI=Yl(2)-RI; A3:R3=Y2(2)-R3$

L53# Ml:X2(2)*Zl; A5:BARA=BARA+INCA+l; A6:BARB=BARB+INCB+1;
A7:RAR=RAR+INCR; Y(2)=RSHBUFA; BUFB=R1R3; Al:RI=PI-P2;
A2:R2=Yl(l)+A1; A3:R3=P3+P43 AA:R4=Y2(1)-A3; DECJ$

"CHANGE SIGN OF P2, P4, AND A3 IN ORDER TO
ACCOMMODATE 135 DEGREES."

L54# M1:X2(2)*ZI; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB; Z=ROM;
X(1)=RSHBUFA; BUFB=R2R4; Al:Rl=YI(l)-Rl; A3:R3=Y2(1)+R3S

L55# Ml:X2(1)*Zl; A5:BARA=BARA+INCA+1; A6:BARB=BARB+INCB+1;
A7:RAR=RAR-INCR; Y(1)-RSHBUFA; BUFB=RIR3; Al:RI=PI-P2;
A2:R2=Yl(2)+AlS A3:R3=P3+P4; A4:R4=Y2(2)-A3; ACSAR-LIT; LIT=L48$

L56# Ml:X2(1)*El; A5:BARA=BARA-INCA; A6:BARB=BARB-INCB; Z=ROM;
X(2)=RSHBUFA; BUFB=R2R4; Al:RI=YI(2)-RI; A3:R3=Y2(2)+R3$

L57# M1:X2(2)*Z1; A5:BARA=BARA+INCA+I; A7:RAR=RAR-INCR; Y(2)=RSHBUfA;
Al:Rl=Pl+P2; A2:R2=Yl(l)+Al; A3:R3=P3-P4; A4:R4=Y2(1)+A3; BUFB=RIR3;
A6:BARB=BARB+W(9); IF NOT CTRJ THEN GO TO L50S

L58# A5:BARA=W(4); A7:RAR=LIT; DECI;
SWAP; GO TO ACSARS

"END OF STAGE 3. ENTER GENERAL STAGE VIA L48."

L59# INTERRUPTS

50

NRL REPORT 7831

R EFFPT:
A BACK•END N.ACRO FOR THE FFT UHICH EF-

FICIENTLY PROCESSES REAL SERIES. A REAL 'VJCTOR IS PACKLD It-'lO A
'ECTOP OF LENGTH N/2 BY PLACING EVEN INDEXED COPONENTS IN lHE REAL
PAkT AND ODD INDEXED CO-PONENTS IN THE IMAGINARiY. AN FFT OF
THIS N/2 VEC3OR IS TAXEN; THE RESULT IS FED INTO THE REFFT
PROG GRAM. REFFT UNPACKS THE DATA AND PEPFORFS T5HE LAST STAGE OF THE
N-POINT FFT THEN OUTPUTS INTO THE APPROPRIATE LOCATIONS.

W(S) CONTAINS THE ROM INCRENMENT -(AC96/N),N=#REAL PTS.
lq(3) CONTAINS THE STARTING ADDRESS AND FINAL ADDRESS,
Wi(A) CONTAINS ADDRESS OF l.ORK-SPACE IN BUF8.
WCI) CONTAINS N/4, CONSISTENT WITH N/2 PT. COMPLEX FFT.
OTHER VALUES FOLLOW FFT FORMAT.
Z IS ASSUMED EOUAL (SIN,COS); FORWARD TRANSFORM IS EXP(-JO)
LOOP ADDRESSING: K IS INDEX THEN BARA ADDRESSES POINTS KN-K
BARB ADDRESSES POINTS K,K+N/2

EFTOW LIT=Q; Y2(4)=LIT; AS: BOTH=~W(3); A6: bARb==W(3)S"INITIALIZE
ADDRESSES"

RFT1 Y(2)=RSHBUFA; A5: BARA=LIT÷INCA+l; LIT=O; UC6)=A5; A3: R4=
Y2(4)+Y2(4)$"INPUT PT. 0, TREAT AS SPECIAL CASE"

RFT2# X(l)=RSHBUFA; AS: BARA=INCA; CTRJ=t:l(1); A2: R2=YI(2)-
Y2(2); A3: R3=Y1(2)+Y2(2)5"HAVE FORMED 0 & N/2 FREQ. PTS..
IN R3R4,R2R4; SET CTRJ FOR FST. LOOP"

RFT39 A5: BARA=BARA+INCA; DECJ;"DECJ FOR PREVIOUS XCl) READ" LIT=O;
A7: INCR=LIT-RSH W(8) S"LOAD ROM INCREMENT"

I FT4# AS: BOTH=BARA+LSHW(l); A6: INCB=LIT+LSHW(l); LIT=D095S
"2etST. ADDRESS)-N12 TO INCA9 N12-1 TO INCO"

RFT5, A5: BARA=BARA-WC(6)S"SET ADDRESS FOR INPUT PT. N/2-1"

RFT6.I A6: BARB=WC4)S

RFT7-2 A7: RAR=LIT+INCR; BUFB=R3R4; A6: BARb=BARB+INCB+l .- 0UTPUT
0-RESULT, SET FOR N/2" Y(1)=RSHbUFA; AS: bARA=LIT+WC6)+1;
LIT=0; ':!(6)=A5S

RFTS# LIT=LPI; ACSAR=LIT; Z=POM; XC2)=RSHBUFA; DECJ; AS: BARA-INCA;
WC7)=A5S

RFT9Y' AS: BARA=LIT-WC7); LiT=0; Al: Yj(3)zXj(l)+YIC(); A2:
Y2(3)=X2(1)-Y2(1); A3: X1(3)=Y2(1) +X2(1); AA: X2(3)=
Y1(1 I) -X 1(1)5S

;FT.1O LIT=O; Y(2)=RSHEBUFA; WC6)=.5; AS: BARA=LIT+lR(6)+lS

RFT1II X(1)=RSHBUFA; DECJ; AS: BARA-I'CA, W(7)=A5; Ml: X2(3)*-=i
N2: Xl(3)*i2; ;.3: X2(3)*;-2; M14: X1(3)*Els

L?10 A7: RAR=RAR+INCP; "OUTPUT N/242J RESULT" BlJ3FUR2 RA. A.1
Yi(5)=Xl(2)-:-Y!(2); A2: Y2(5)=X2(2)-Y2(2)- AS: k.9'L11-l(7)3 LIT=.;
A6:G AR=B ARBL-INCb; A3: X1(5)--Y2(2)*+X2(2)I A'k: X'2(5)=Y1C2)-X(2)

51

SMITH AND RUSSO

L.P2:. YCl)=RSHHUFA; AS: 7-ARA=LIT+÷W6)+1; W(6)=A5; E=ROM4; A1l Rl=P 1-,P2;
AR: 2 P-=Y1(3) -'-Al

A3: R3=P3-P4 3 A4: R4=Y2(3)+A33 S

LP3#' LIT=3; X(2)=RSHBUVA;DECJ; BUFB=R2R4; "OUTPUT 2J+1 RESULT" V;(7)=A5;
A5: bA RA-INCA;

Al: R 2=Y1(3)-R1; A3: R4=Y2t3)-R3; A6: BARB=BARB+INCB+l;
IMl:X2C5)*E_1, N'2: X1(5)*Z2; M3: X2(5)*8B23 MA: Xl(5)*7-ls

LPA# AS: HARA=LIT-'WC7); A7: _ RAR=RAR+INCR; "OUTPUT N/2-2J+1 RESULT"
BUFB=R2R4; Al:Ylt3)=Xltl)+YI(l); A2: Y2(3)=X2(l)-Y2Cl); A3: XIC3)=
Y2(1)+X2(l); A4: X2(3)=Yltl)-X1tI); A6: BARB=BARb-INCLS

LP5# Wt C6)=A5; Y(2)=RSHBUFA; A5:
BARA=LIT-W(6)+l; LIT=0 ; Al: RI=PI+P2;
A2: R2= Yl(5)+AlI A3: R3=P3-P43 AA: R4=Y2C5)+A3; Z=ROMS

LP6# IF NOT CTRJ THEN GO TO ACSAR; DECJ; "OUTPUT 2J RESULT" BUFB=R2RA;
X
(1)=RSHBUFA; AS: BARA-INCA;

lJ(7)=A 5;
Al: R2=Y1C5)-R1; A3: R4=Y2C5)-R3; A6: BARB=B ARB+INCB+1; MI:

X2t3)*-1; M2:XI(3)*Z2; M43!X2C3)*E2; M4: X1C3)*ZIS

" NEXTSECTION KEEPS PIPE FULL AND PERFORMS BONUS MULTIPLY BY J
THE NEXT SECTION liILL STEP DO',,N THRU THE ROM AND COMPUTE COMPM
PRODUCTS AS THOUG-s ROM COEFFICIENTS RANGED FROM PI/2 TO PI.
NEXT LOOP WILL YIELD RESULTS CONJUGATE TO THOSE IN FIRST LOOP

RFTIS# LIT=NLP0; ACSAR=LIT; CTRJ=Wtl); Al: X1C5)=YI(2)+Yl(2);
A2: Y2(5)=X2(2)-Y2(2); AA: YlC5)=YI(2)+Xl(2); A6: BARB=BARB-
INCB; BUFB=R2R4S

RFTl9 DECJ; LIT=0; Al: Rl=Pl+P2; A2: R2=Y1C3)+Al; A3: R3=P3-P4;
AA: R4=Y2(3)+A3; A5: -BARA=LIT-1X'7$S

RFT20# LIT=O; Ytl)=RSHBUFA; BUFB=R2RA; Al: R2=YlC3)-RI; W(6)=A5;
A3: RA=Y2(3)-R3; A5: BARA=LIT+Wt6)+1; A6: BARB=BARB+INCBi1s

RFT21 A3: R3=Y2(2)+X2C2); X(2)=RSHBUFA; DECJ; BUFB=R2R4; A5: BARA-INCA
WC7)=A5; A6: BARB=BARB-INCBS

RFT22# Al: RI=Xl(5)-Yl(5); A2: R2=YIC5)+A13 A3: R4=Y2C5)-R3;
AS: BARA=LIT-WC 7); LIT=05

RFT23# Y(2)=RSHBUFA; lJ(6)=A5; AS: BARA=IT+1,(6)-l; LIT=0; DECJS

RFT24# Al: Yl(3)=Xl(1l)+Yl(); A2: Y2(3)=X2(1)-Y2C1); A3: XIC3)= Y2CI)
+X2(l); A4. X2(3)=Y(lt)-Xl(l); GO TO NLP3S

NLPCE' X(2)=RSHBUFA; DECJ; AS: EBARA-INCA; W*(7)=A5; BU;BR2R43 Al:
R2=-YIC3)-R1; A3: R4=Y2(3)+R3; A6: bARb=bARBINCB+I1; Ml:
X2(5)-l; M2: XlC5)*KZ2; M3: X2(S5)*iE2; :A4: Xl(5S)*4lS

NLPI' AS: BARA=LIT-l.i(7); LIT=0; BUFB=R2R4; Al: Yl(3)=Xll)+YClt); A2:
Y,23)=X2(I)--Y2Cl); A3: Xlt3)=Y2t.l)q-X2tI); AA4. X2t3)=
Yl~l)-Xl~l); A6: BARBBf-iRB-INfs A7: RAR=RAR-INCRS

NLP2' ZROM; YC2)==RSHBUFA; Wt6) AS; AS: PARA=LITWt,(6)+I; LI =03
Ai:RI=PI-P2; AR: R2=Yl(5)+AI; A3: R3=P3FP4; AA: R4=

'P~t c;EXE<C 52

NRL REPORT 7831

NLP3#i DECJ; X(t)=RSHbUFA; A5: BARA-IMCA; I (7)=A5; BUFB=22R4; A6:
BA!b=bAkb-+INCb+1; M11: X2C3)*iE1; M2: XIC3)'23 M3: X2(3)*
Z2; MA: XIt(3)*'.l Al: R2=YI(5)-R1; A3. R4=Y2(5)+R3S

NL.P # A7: RAR=RAR-INCR, LIT=0; A5: BARA=LIT-W(7); BUiB=R2 P4; Al. Yl
(5)=XlC2)+YI(2); A2: Y2(5)=X2(2)-Y2(2); A3: XlCS)=Y2C2)+X2(2); AA:
X2(S)=YIl2)-X1(2); A6: BARB=h-BARB-INCB; S

NLP5# IFNOT CTRJ THEN GO TO ACSAR; Z=ROM; Y(I)=RSHBUFA; 1.t)(6)=ASi A5: BA
RA=LIT+W(6)+l; Al: Rl=P 1-P2; A2:R2=Y1C3)+Al;

A3: R3=?3+P4; AA: R4=Y2(3)-A3; S

RFT31# Al: R2=Ylt3)-RI; A3: R4=Y2(3)+R3; BUFB=R2R4; A6: BARB=
BARBEINCB+l; A7: RAR=RAR-INCR; MI: X2(5)*2l; M2: XIC5)*22;
M3: X2t5)*Z2; M4: XI(S)*ZIS

RFT32# LIT=SLPI; ACSAR=LIT; BUFB=R2R4; Z=ROM; Al:
YlC3)=XlCl)+YICl); A2: Y2(3)=X2C1)-Y2(l); A3: X1(3)=Y2(l)
+X2(l); AA: X2(3)=YI(I)-Xll); A6: BARB=BARB-INCBS

RFT33# LIT=-I; A5: BOIH=LIT+LSHWUI); "N12-1 TO INCA" Al: Rl=PI-P2;
A2: R2=YI(5)+Al; A3: R3=P3+PA; AA: R4=Y2(5)-A3;CTRJ=LSHW(l);
MI: X2(3)*Zl; M2: Xl(3)*72; t43: X2(3)*Z2; MA: Xl(3)*ZlS

RFT34# DECJ; BUFB=R2RA; Al: R2=YI(5)-R1; A3: R4=Y2(5)
+R3; A6: BARB=BARB+INCB+l; A5: BARA=BARA+Wh6)S

RFT35# BUFB=R2R4; A6: BARB=BARB-INCB; Al: Rl=Pl-P2; A2: R2=YlC3)+A-I;
A3: R3=P3+P4; AA: RA=Y2t3)-A3S

RFT36# BUFB=R2R4; Al: R2=YlC3)-Rl; A3: R4=Y2(3)+R3; A6: BARB=BARB+INCB

RFT37# BUFB=R2RA; WC(6)=A5; LIT=0; A5 LIT+tINCA+IS

RFT3S# DECJ; X(2)=RSHBUFB; A6: BARB=BARb-1j(6)S

THE FOLLO'NsING LOOP SCALES THE DATA BY T1WO TO KEEP SCALING THE SAME
AS THE FFT

SLPl# IF CTRJ THEN SKIP; A6: BARB=BARB+INCB3 BUFA=X(2); A5: BARA=BARA
-1WC6); X(I)=RSHBUFBS

SLP2# DECJ; A6: BARB=BARB-W(6); BUFA=X(l); A5: BARA=BARA+INCA; X(2)=
PSHBUFB; GO TO ACSAR$

RFT41# X(2)=B-U'.B; A6: BARB=BARb-V'(t6); EUFA=X(I); A5: BARA=bARA+INCAS

RFTA'2i7 BUFA=X(2); A5: bARA=BARA-l':(6): X(l)=13UFBS

RFTA3# BUFA-X(l); INTERRUPTS

53

SMITH AND RUSSO

73/03/07. 15.25.40.
PROGRAM OCT

SPAU PROGRAM 'OCT'

W(0)=MACRO ADDRESS W(l)=NO. OF POINTS INPUT
W(2)=ADDRESS IN BUFB OF FEEDBACK TERMS CARRIED OVER

(FOUR FOR OCTAVE 8; SIX FOR OTHER OCTAVES)
W(3)=SECOND RAR OF LAST-USED FILTER
W(4)=0 W(5)=l
W(6)=LATEST COMPLEX FILTER OUTPUT ADDRESS (START AT 512)
W(7)=LATEST REAL FILTER INPUT ADDRESS (BUFA)
W(B)=LATEST REAL FILTER OUTPUT ADDRESS (BUFA)
WC9)=4, RESET VALUE FOR MODULO COUNTER, CTRK
WCI0)=OFFSET INITIALIZATION VALUE FOR WORD COUNTER, CTRI

NOTE:---W(2) IS NOT CURRENTLY IN USE.

INIT# A5:BARA=LIT-INCA; A6:BARB=LIT-INCB; LIT=l;
A7:INCR=LIT; W(5)=A7S

I 1# A5:INCA=BARA+INCA; A6:INCB=BARB+INCB; A7:LIT;
W(6)=A7; LIT=512$

12# A7:RAR=LIT; W(3)=A7; LIT=2048S

MiAIN. A5:BARA-INCA; W(4)=A5; CALL DEMODS

M4# CTRJ=LIT; LIT=7$

M5# DECJ; CALL RFIL$

M6# IF NOT CTRJ THEN GO TO M5$

M7i# INTERRUPTS

RFIL1 A5:BARA=W(4); A7:RAR=RAR+INCR; CTRK=LIT; LIT=2;
Al:Xl(15)+Yl(15); Xl(l)=Al; X2t1)=Al$

"INCREMENT RAR TO ROM ADDRESS OF NEXT tI.E.THIS) SET OF
FILTER COEFFICIENTS. USE X(15) TO CLEAR FEEDBACK TERMS;
THEY WOULD NOT BE ZERO AFTER THEIR FIRST USAGE. THIS
WOULD NOT BE DONE IF FEEDBACK hAS BEING CARRIED OVER
BETWEEN INPUT BATCHES."

RP9r A7:RAR=RAR+INCR; Z=ROM;
Al:XIl15)+YI(15); Xl(2)=Al; X2(2)=AIS

R1O# A7:LIT+RSHW(I); W(l)=A7; CTRI=RSHW(I); Y(l)=BUFA5
"SET CTRI AND W(l) TO NUMBER OF INPUT WORDS

(=HALF NUMBER OF INPUT POINTS).

54

NRL REPORT 7831

Rll# Ml:XI(l)*Zl; M2:X2(1)*E2; M3:XlCl)*Z3; M4:X2(1)*Z4;
A7:LIT3 W(S)=A7; Z=ROM3 LIT=-IS

R12# M1:Xl(2)*El; M2:X2(2)*Z2; M3:X1(2)*Z3; M4:X2(2)*Z4; P=BIT3;
A7:RAR=RAR-INCR$

R13# Al:Pl+P2; A2:X2(1)=YI(I)+Al; A3:P3+P4; A4:YI(2)=Yl(l)+A3;
A6:BARB=LIT+W(2); A7:RAR=RAR+INCR; Z=ROMj P=BIT3$

X IS THE FEEDBACK TERM. Y IS THE OUTPUT OF
THE TWO-POLE."

R14# Ml:X2(1)*ZI; M2:Xl(l)*Z2; M3:X2(1)*E3; M4:X1(1)*Z4;
Al:Pl+P23 A2:X2(2)=YI(2)+A1; A7:R7=LIT; LIT=R13; F=ROM; DECKS

"REVERSE ROLES OF FEEDBACK STORES, Xl AND X2.
DO NOT GENERATE FIRST OUTPUT POINT IN A4."

R15# M1:X2(2)*ZI; M2:X1(2)*E2; M3:X2(2)*Z3; M4:XI(2)*E4; P=BIT3;
A7:RAR=RAR-INCR; DECIS

R16# AlzPl+P2; A2:Xl(l)=Y2(1)+AI; A3:P3+P4; A4:Y2(2)=Y2(1)+A3;
Z=ROM; A5:BARA=BARA+INCA; W(7)=A5; A7:RAR=RAR+INCR; IF CTRK THEN GO
TO RIS; P=BIT3$

" CTRK COUNTS ALTERNATE PAIRS OF POINTS TO
CONTROL PACKING, NOT DECIMATION."

R17#P Ml1:XIXl)*Zl; M2:X2(1)*E2; M3:XI(I)*Z3; M4:X2(1)*Z4; E=ROM;
Al:Pl+P2; A2:X1(2)=Y2(2)+A1; A3:P3+P4; A4:R3=Y2(2)+A3;
YtI)=BUFA; GO TO R12$

R18# Ml:Xl(l)*ZI; M2:X2(1)*Z2; M3:XI(I)*Z3j M4:X2(1)*EA; Z=ROM;
Al:Pl+P2; A2:XI(2)=Y2(2)+A1; A3:P3iP4; A4:RA=Y2(2)+A3;
Y(1)=BUFA; A5:BARA=LIT+W(8)+1; W(8)=A5S

R19# Ml:XI(2)*Z1; M2:X2(2)*Z2; M3:XI(2)*Z3; M4:X2(2)*Z4;
A5:BARA=W(7); A6:BARB=BARB-INCB; A7:RAR=RAR-INCR;
BUFA=R3RA; BUFB=X(2); P=BIT3; CTRK=LIT; LIT=2;
IF NOT CTRI THEN GO TO R7$

"STORE FEEDBACK TERMS IN BUFB FOR POSSIBLE
CARRYOVER TO THE NEXT BATCH."

R20# A7:RAR=RAR+INCR; BUFB=X(l); W(3)=A7$

DEMOD# A5:BARA=W(A); A6:BARB=W(4); A7:RAR=LIT; LIT=2079S
"FIRST TWO OSCILLATOR PHASES ARE IN ROM(2079)."

D22h A5:BARA=BARA+INCA; A6:INCB=LIT+RSHW(1); LIT=-3;
A7:RAR=RAR+INCR; E=ROM; X(O)=BUFA$

55

SMITH AND RUSSO

D23# Ml:Xl(0)*Zl; M2:XI(0)*E2; M3:X2(0)*Z3; M4:X2(0)*34;
A5:BARA=BARA+INCA; A7:LIT; LIT=4; W(9)=A7; E=ROM;
Y(0)=BUFA; CTRK=LITS

"DEMODULATE TWO INPUT POINTS (IN XI AND X2) AT
A TIME."

D24# A6:LIT+INCB; W(10)=A6; DECK$

D25# Ml:YI(0)*ZI; M2:YI(0)*E2; M3:Y2(0)*E3; M4:Y2(0)*Z4;
A6:INCB=W(5); A7:RAR=RAR+INCR; X(O)=BUFA3 DECK;
Rl=PI; R2=P2; R3=P3; R4=P4S

" CTRI COUNTS INPUT WORDS."

D26# A5:BARA=BARA+INCA; A6:BARB=BARB+INCB; A7:R7=LIT3
LIT=D2S; E=ROM; CTRI=W(10); BUFB=RlR2$

"OUTPUT THE FIRST POINT AS A QUAD PAIR. OFFSET
CTRI BY 3 TO ACCOUNT FOR MISSED READS."

D27# MI:XI(0)*EI; M2:XI(0)*E2; M3:X2(0)*Z3; M4:X2(0)*A4;
A6:BARB=BARB+INC8; A7:RAR=RAR+INCR; Y(0)=bUFA;
RI=Pl; R2=P2; R3=P3; R4=P4; BUFB=R3R4; DECKS

"OUTPUT SECOND POINT AS A QUAD PAIR."

D28# A5:BARA=BARA+INCA; A6:BARb=BARB+INCB;
Z=ROM; BUFB=RIR2; DECI; IF CTRK THEN GO TO D32$

"OUTPUT ONE QUAD PAIR TO BUFB ON EVERY CLOCK."

D29# Ml:Yl(0)*Zl; M2:YI(0)*E2; M3:Y2(0)*Z3; M4:Y2(0)*24;
A6:BARB=BARB+INCB; A7:RAR=RAR+INCR; X(0)=BUFA; BUFB=R3R4;
Rl=Pl; R2=P2; R3=P3; R4=P4; DECK; IF CTRI THEN GO TO D34$

D30# A5:BARA=BARA+INCA; A6:BARB=BARB+INCB; E=ROM; BUFB=R1R2;
DECI; IF NOT CTRK THEN GO TO D27S

" CTRK COUNTS MODULO 5 (5 ROM WORDS = 10 PHASE ANGLES)."

D31# Ml:X1(0)*El; M2:XI(0)*Z2; M3:X2(0)*Z3; M4:X2(0)*E4;
A6:BARB=BARB+INCB; A7:RAR=LIT; LIT=2079; BUFB=R3R4;
CTRK=W(9); Rl=P13 R2=P2; R3=P3; R4=P4; Y(0)=BUFA; GO TO R7$

D32# Ml:Yl(0)*Zl; M2:YI(0)*Z2; M3:Y2(0)*Z3; M4:Y2(0)*ZA;
A6:BARB=BARB+INCB; A7:RAR=RAR-W(9); X(0)=BUFA; BUFS=R3R4;
Rl=PI; R2=P2; R3=P3; R4=P4; CTRK=W(9); IF CTRI THEN GO TO D34S

D33# A5:BARA=BARA+INCA; A6:BARB=BARB+INCB; E=ROM; BUFB=RIR2;
DECI; GO TO D27S

D34A, A6:BARB=BARB+INCB; BUFB=RIR2$

D35# A6:BARB=HARB+INC3; BUFB=R3RA; Rl=PI; R2-P2; R3=P3;
R4=P4$

56

NRL REPORT 7831

CFIL# A6:BARB=BARB+INCB; A7:RAR=LIT+W(3); LIT=I;
W(3)=A7; BUFB=RIR2$

"INITIALIHE RAR TO 1 + ADDRESS OF LAST=USED FILTER."

C37# A6:BARB=W(4); A7:RAR=RAR+INCR; Z=ROM; BUFB=R3R4;
CTRK=LITs LIT=2$

"FINAL OUTPUT FROM DEMOD TO BUFB."

G38# Ml:Xl(l)*Zl; M2:X2(1)*Z2; M3:Xl(l)*Z3; M4:X2(1)*Z4;
A5:BARA=W(6); Y(1)=BUFB; A7:RAR=RAR-INCR; Z=ROM$

"MULTIPLY FOR FIRST TWO-POLE OF SINE CHANNEL."

C39# Ml:Xl(2)*ZI; M2:X2(2)*E2; M3:XI(2)*Z3; M4:X2C2)*Z4;
A7:RAR=RAR+INCR; Z=ROM; CTRI=RSHW(I); P=BIT3$

"SET CTRI (BUT NOT W(1)) TO HALF NUMI3ER OF INPUT
WORDS. SECOND TWO-POLE OF SINE CHANNEL."

C40# M1:Xl(3)*Zl; M2:X2(3)*E2; M3:Xl(3)*Z3; M4:X2(3)*74;
Al:Pl+P2; A2:X2(1)=YIC1)+Al; A3:P3+P4; A4:YI(2)=Y1(I)+A3;
A7:RAR=RAR-INCR; Z=ROM; P=8IT3S

"FIRST TWO-POLE OF COSINE CHANNEL."

C41# Ml:XlC4)*Z1; M2:X2(4)*Z2; M3:XI(4)*F3; M4:X2(4)*F4;
Al:Pl+P2; A2:X2(2)=YI(2)+Al; A7:RAR=RAR+INCR; Z=ROM;
DECK; P=BIT3S

CTRK COUNTS FOR 2:1 COUNTDOWN OF GENEREATED
PAIRS. DO NOT GENERATE FIRST SINE OUTPUT IN
AA. SECOND TVO-POLE OF COSINE CHANNEL."

C-42# Ml:X2(1)*Zl; M2:Xl~l)*Z2; M3:X2(1)*E3; M4:Xl(1)*Z4;
Al:Pl+P2; A2:X2(3)=Y2(1)+A1; A3:P3+P4; A4:Yl(2)=Y2(1)+A3;
Z=ROM; A6:BARB=BARB+INCB; A7:RAR=RAR-INCR; P=BIT3$

"REVERSE ROLES OF FEEDBACK STORES XI AND X2."

C43# M1:X2(2)*Fl; M2:X1(2)*Z2; M3:X2(2)*Z3; M4:Xl(2)*24;
Al:Pl+P2; A2:X2(4)=YI(2)+A1; A7:RAR=RAR+INCR; Z=ROM;
Y(1)=BUFB; P=BIT3$

"DO NOT GENERATE FIRST COSINE OUTPUT IN AA."

C44#/ MI:X2(3)*ZI; M2:X1(3)*Z2; M3:X2(3)*93; M4:XI(3)*24;
Al:Pl+P2; A2:Xl(I)=YI(I)+AI; A3:P3+P4; A4:Y1(2)=Y1(l)+A3;
A7:RAR=RAR-INCR; Z=ROM; DECI; P=BIT3$

" CTRI COUNTS ONCE FOR EVERY TWO READS OF BUFB
(AT C43 AND C47)."

C45# M1:X2(4)*ZI; M2:Xl(4)*Z2; M3:X2(4)*Z3; M4:X1(4)*Z4;
Al:Pl+P2; A2:XI(2)=YI(2)+Al; A3:P3+P4; A4:R3=Y1(2)+A3;
A7:RAR=RAR+INCR; Z=ROM; P=bIT3S

"PACK SINE OUTPUT IN R3."

57

SMITH AND RUSSO

C46# Ml:Xl~l)*Fl; M2:X2(1)*Z12; M3:Xl(l)*7z3; M4:X2(1)*7Z4;
Al:Pl+P2; A2:X1(3)=Y2(1)+Al; A3:P3+P4; A4:YI(2)=Y2(1)+A3;
A7:RAR=RAR-INCR; A6:BARB=BARB+INCB; Z=ROM; P=BIT3$

C47# Ml:XI(2)*ZI; M2:X2(2)*Z2; M3:XI(2)*Z3; M4:X2C2)*Z4;
Al:Pl+P2; A2:XI(4)=YI(2)+Al; A3:P3+P4; A4:R4=YI(2)+A3;
A7:RAR=RAR+INCR; Z=ROM; Y(l)=bUFB; IF NOT CTRK THEN GO
TO C40; P=BIT3$

"PACK COSINE OUTPUT IN R4. IF CTRK IS NOT ZERO,
DISCARD R3R4."

C4S# Ml:XI(3)*Zl; M2:X2(3)*Z2; M3:Xl(3)*Z3; M4:X2(3)*Z4;
Al:Pl+P2; A2:X2(1)=Yl(l)+Al; A3:P3+P4; A4:Yl(2)=Yl(l)+A3;
A5:BARA=BARA+INCA; A7:RAR=RAR-INCR; W(6)=A5; BUFA=R3R4;
Z=ROM; CTRK=LIT; LIT=2; IF CTRI THEN GO TO ACSAR; P=BIT3$

C49# Ml:Xl(4)*Il; M2:X2(4)*Z2; M3:X1(4)*Z3; M4:X2(4)*Z4;
Al:Pl+P2; A2:X2(2)=Yl(2)+Al; A7:RAR=RAR+INCR. Z=ROM;
DECK; GO TO C42; P=BIT3$

58

NRL REPORT 7831

VA31 SUNi:
THIS PkO(GHAM GIVES A LOCAL AV/EkAGE OF FOUh ELEMEN'1S tlHOSE
INITIAL A)DIhESS IS SPECIFIED IN' AN INDIlcECI AblD ESS(IA)
MO DE

W(3) CONTAINS ALIDESS OF IA TABLE: IN uUFA.
1C(4) CONIAINIS AlDRESS OF COEFFICIEN1 lAbLE IN bUF b.
h(2) CONlAINS NUNbEH Oi FOINIS IN IA TAuLE

REAL PARI OF IA lAuLE V.ORD CONIAINS IA.
OUTPUI IS V.PIllEN INTO CORhESFONDING IA lABLE ADDRESS

hS0,9 CTRJ=:.(2); A6: bO'IH=INCbS"LOAD NO. OF P15. TO CTR"

WSl A5: BO'lH=1;(3); A6: INCB=bARb-INCb$"z:ERO INCB, LOAD IA TAbLE
-ADDRESS"

h S2'; X(6)=bUFA; DECJ; A5: bOTH=LITf+INCA+l; A6: BARbu=V(4); LIT=0S
"LOAD COEFF. lAsLE ADDltESS"

IvS3i' X(5)=BUFA; DECJ; W(S)=X1(6);"TRANSFER IA 10 ADDRESS SECTION"
Y I)=BUFb; A6: bARb=BARs+IINCi+I; ACSA'R=LIl; LIl=WSl1 4S

V. S 4 LI1=(3; Y(2)=BUFB; AS: bARA=LI'l+M.(5); A6: bARb=BARh+INCb+lS

hSs' X(l)=tUFA; lW(5)=A5; L-11=I; A5: t3ARA=LIiT+l:(5)5

WS 60 X(2)=-uUFA; l.(5)=A5; LI I=1; A5: BAkA=LIT+'VC(S); MI.: Xl(l)*Yl(l);
M2: X2(1)*Y2(l); M3: X2(l)*YYll ll:); Xyl(l)*Y2(l)S

ViS7iP N:M. Xl(2);.YI(2); M12: X.2(2)*Y2(2); M3: X2(2)AYlC2);
MA: Xl(2)*Y2(2); GO 10 LAS

L t It IF C1hJ THEN GfO 10 ACSAR; " EXI-i bEFORE N+1 ST XM5)" X(1)=bUFA;
LI.I=l; Ml Xl(4)*Y1(A); t12: X2(4)*Y2(4); M3:
X2(4)'-YI(4); MiAl: XIA4)*Y2(4); AS: isARA=LIT+..C5); A6: bAREs=
bARrb+IfNCB+ 15

L I P Y) I =kBUFhs; A6: bAPB= bARb+INCb+I; XC2) =BUFA; A5: bOlH=LI I+I NCA+ .
LIV=0; Al: Pl-P2; A2: R2=h:2+AI; A3: P33+P4; A4: k-,4=
R /4 +.A 35

L2i, X S)= BUiA;'(E- lI ,l IAV.'' D.ECJ; Y(2)=tUiJt tlI: AI C)I-Y I);
112: X2C I) I.Y2C I); ,3 x2C) Y 1 (); I:4I X I (I)Y2 1)
tAl: PI-H2; A 2 kk2-- Al; h..: P3 -4; Az4: K .h4 A'-3;
A.: LA1,. A L -I -- i , LI 1= -2"tiUS1 LILCLf E AL bRi SS 10
ACCOUi'' FOR D£1; Y iN" GEl l' j:',iLSUL-i"

L 1-1UF1=-1R; ; ''0UTIUT PER' Li'' Il ., S)=A5 _ AN: A5 RAL1I i5);
A6: hA HA1Ki - U';s- ; ,i: XI ') Yi); 1:2: X2(,)-'Y2C2)
i1i3: X2('2)9YI(,^); ti0X,' Y;("'

59

SMITH AND RUSSO

L4/ "EN1ER LOOP" X(3)=uUFA; AS: bAPA=LI1+E(S); LIT=1; Y(3)=bUFt;
A6: IAf'Rbt.4b+INCb+1; t.(5)=X1CS);"lRANSF'E I'A" Al:
R2=Pi-P2; A3: RA=P3+PAS

L5; XC4)=bUFA; Y(4Z=bUb; GO 10 L0; AS: BARA= .(5), Al: Pl-F2;
A2: F.2=R2+A!; A3: F3+P41;; AZ: R4=R4+A3; MI: XiC3)*YI(3)]
M2: X2(3)*Y2(3); M3: X2(3)*YI(3); M4: X1(3)*Y2(3)5

hS14fi A6: bARu=bARb+INCb+l; Y(i)=uuFb;; AS: khRA=LIl-?W(S), V(5)=AS;
X(2)=bUFA; Al: Pl-P2; A2: R2=R2+Al; A3: P3*P4A; AA: k4=k4+Ai;

VWSlIS X(3)=DUFA; AS: bARA=LIl'+INCA; Y(2)=BUFb; A6: tARb=bARb+INCb+l;
M1: Xl(l)*YICI); M2: X2(1)*Y2(1); M3: X2C1)*YI(I);
MA: Xl(l)*Y2(1); Al: Fl-P2; A2: R2=R2+Al; A3: P3+-4;
AA: K4=RA+A3; LIl=-l$

,516# 6 BUFA=R2R4; AS: BARA=LIT+tl-(5); LIT=I; 1.(5)=AS; Y(3)=BUFB;
A6: bARb=bARb+INCb+l; Ml: X1(2)*Y1(2); M2: X2C2)*Y2(2);
*NI3: X2(2)*YI(2); MA: X1(2)*Y2(2)S

V.S17i7 X(A)=BUFA; Al: R2=Fl-P2; A3: R4=P3+P4; Ml: Xl(3)*YI(3);
M2: X2(3)*Y2(3); M3: X2C3)*Yl(3); MA: XI(3)*Y2(3);
Y(4) =bUFiiS

'kSISfi Al: Pl-P2; A2: R2=R2+AI; A3: P3+PA; AA: R4=R4+A3; Ml: XI(A)*
Yl(4); M2: X2(4)*Y2(4); M3: X2(4)*YI(4); MA:X1CA)*Y2(4)S

6S19# Al: Pl-P2; A2: R2=R2+AI; A3: P3+PA; A4: R4=R4+A3S

VS20# Al: Pl-P2; A2: R2=R2+Al; A3: P3+P4; A4: kA4=R4+A3;
A5: BARA=INCAS

V;S2l# bUFA=R2k4;. IN1E7fRUPTS

60

NRL REPORT 7831

X CO RR EL

THIS CROJiS-CORRELAlION PROGRAM IS A LINKING Or1'; IREE rEMACROS: CONJG,
ML-T,LFFT. 1HE ADDRESS OF LFFT MUST bE IN V,(0); 1HE ADDRESS
OF CONJ~g MUST bE IN V(tII). THE EXIT ADDRESS MUSI BE IN 1(10)
HERE THE EXIT ADDRESS, DONE, IS AN INTERRUPT;. lt(3) AND RC4)
CONTAIN THE S1ARTING ADDRESS OF THE INPUT ARRAYSONE IN BUFA
ONE IN bUFB. O1HER PARAMETERS IN W-SIORE ARE DEFINED IN THE
MACROS THAT UTILIEE THEM. "

'MLT: VECTOR IN bUFA IS MULTIPLIED BY VECTOR IN bUFB. RESULT AND
SOURCE VECTORS START IN LOCAIION IN V:(3)"

MLT0# LIT=O; A7: LIT; WtC7)=A7S

MLTI# LIT=-2; W(8)=A73 A7: LIT$

MLT2# AS: BOTH=W(3); A6: bOTH=h(3)S"LOAD START ADDRESSES"

MLT3# CTRJ=LSHW(1)3 AS: INCA-BARA-INCA; A6: INCb=BARb-INCbS"ZERO
INC REGISTERS, N TO CTRJ"

MLT4# DECJ1 ACSAR=LIT; LIT=LL; X(l)=bUFA; Y(l)=bUFB; AS: BARA=bARAi
INCA+3I A6: bAkb=bARb+lNCh+13 l (7)=A6S"SET UP LOOP ON LL.
SAVE bARb IN hV7) FOR DELAYED OUTPUT OF RESULT"

MLT5# DECJ; Ml: Xl(l)*Y1(1); M2: X2(1)*Y2(1); M3: X2(1)*Y1(l); MA:
XI(I)*Y2(l); Y(2)=BUFb3 A6: BARB=BARB+INCBil; W(7)=A6;
LIT=mLTIl; A7: R7=LITS"SET LOOP ESCAPE"

MLT6# DECJ; X(2)=hUFA; AS: hARA=BARA+INCA+IS

LL! Y(l)=bUFb; A6: BARb=hARb+ W(C); Al: R2=PI-P2; A3: R4=P3+P4; Ml:
X1(2)*YI(2); M2: X2(2)*Y2(2)3 M3: X2(2)*YlC2); M4: XI(2)*
Y2(2)S

LM# DECJ; X(I)=BUFA; AS: BARA-bARA+INCA+IJ bUFb=R2R43 A6: bARB=LIT+V.(7);
LIT=l

J 1v(7)=A6$

LNW Y(2)=BUFB; Ml: Xl(l)*Yl(1); M2: X2(1)*Y2(1); M3: X2(l)*Yl(l)
S MA: Xl(l)*Y2(1); Al: R2=PI-P2; A3: R4=P3+P4; A6: bARB=bARb+hC8);

IF CTRJ THEN GO TO R7S
L04 DECJ; X(2)=bUF'A; BUFb=R2R43 A6: BARB=LIT+i-(7) ; LIT=I; V.C7)=A6; AS:
bARA=b
AR.A+INCA+I1;GO TO ACSARS

f1-LTlli X(2)=bUFA3 bUF'==R2PI4 A6: BARb=hARB-1lNCB+l$"EMPT'Y PIPE"

1-L'112# Ml: X1(2)*YI(2); M2: X2(2)-'AY2(2)3 M3: X2C2)*Y!C2);
MA: XI(2)*Y2(2); Al: R2=PI-P2; A3: RF4=P3+P4S

MLT13.-) BUFb=R2R4; A6: bARR=bARRb-INCb+lS

MtL-14h# LIT=C; A7: R7zLI1+t-;(R); Al: R2=Pl-P23 A3: R2-=P3+-P41

Ml'1150 BUFh=R2R/; S';iJAP; GO 10 R7"P`R-ESULT 1T0 DUFAr EXIT TO ADDRESS IN
H, (2!) "'

61

SMITH AND RUSSO

r- CONJG: CONJUGATES DATA AND SHIFTS BY At.1OUNT IN t-;C12)

C'ONJJG,,' A5: b0THI=.C3); A6. BOTIR=W(3)S

CONJGI;; LIT=O3 A7: R7=LIT-+-1-(0); Yl(l)=LIT; A5: INCp.=bARA-INCA; A6: INCB
=BARb-INCb S "SET EXIT ADDR.ESS IN R7, ZERIRO INC REGISTERS, LOAD
STARTING ADDRESS FROM ts(3)"

CONJGIS5 A6: BARb=BARb+Wt(12)S-

CONJG2; CTRJ='.W(!); X(l)=BUFA; AS: bARA=bARA+INCA+I; A7: RAR=LIT-;-li-l);
LIT=- IS
*SET CTRJ AT N/2, PRPARE CTRI hlITH DECREMENT"

CONJG3# DECJ; X(2)=bUFA; A5: bARA=BARA+INCA+l; Al: R2=Xl(l)+Y1(l);
A3: RA=Yl(l)-X2(l); A7: RAR-RSHV-(12); V;(l2)=A7; LIT=LPI;
ACSAR=LITS "LOOP ON LPI, DECJ FOR X(1) READ, CONJG. FST.

DATA"

CONJG4A CTRI=hC12); LIT=0; A7: LI1; h(l2)=A7; " SET CTRI =(N-C12))/2-I,
ZERO W(12) SO NO SHIFT ON NEXT CALL"S

LPI DECJ; bUFB=R2R4; X(I)=BUFA; Al: R2=X1(2)+YI(l>; A3: RA=
Y1(l)-X2(2); AS: bARA=bARA+INCA+1; A6: bARb=bARB+INCB-l;
IF CTRI THEN GO TO ROT "LOOP ON LPi, ROT COiF-LETES IHE CIRCULAR
SHIFT OF THE DATA POINTS" S

LP2# DECI; IF NOT CTRJ THEN GO TO ACSARJ Al: R2=X1Cl)+Yll); A3: R4=
Y1(l)-X2CI); A6: bARB=bAR8+INCB+1; bUFB=R2R4; X(2)=BUFA;
AS: BARA=BARA+INCA+I-$

CONJG7# BUFb=R2R4; Al: R2=X1(2)+YI(1); A3: R4=Y(l1)-X2(2);
AS: INCA=WsIC)3 A6: bARB=bARB+INCb+lS

CONJGS# bUFb=R2R4;SWAP; AS: INCA; ..(0)=A5;
" HERE hE SET ACSAR FOR FFT RETURN, MAKE WC(10) CONTENTS NEW

CONJG EXIT" : GO TO R7$

ROT) CTRI=W(C) ; Al: R2=Xl(1)+YY(l); A3: R4=YI(I)-X2(1);
AS: bARA=bARA÷INCA+l; bUFb=R2R4; X(2)=BUJFA; A6: bARB=INCb;
IF NOT CTRJ THEN GO TO ACSARS

ROTI# GO TO CONJG7S"THIS RETURN NEEEDED FOR CASE hC12)=2"

DONEF, INTERRUPTS
" SPAU PROGRAM 'LFFT'

I4(I)=N/2 2 !(2)=LOG2(N) h(3)= DATA ADDRESS V,(Z)= RESULT1 ADDRESS
',C,(5)?CT;RK=BUTTERFLIES PER HALF GROUP
W(6)c.CTRJ=GROUPS PER SIAGE

C'iRI -S1 AGE C(3)=ROM INCREtMENT W9) = I"

LO' AG:UARD=INCH; A7:RAR=LIT+lNCR; A5kINCA~VwCl); CTRJ=l;l)S

LInl A5:DARA=SW(3); A6: TINCBDARD-INCR; A7:RARI-RAR-INCRS

L.2¾ A5*BARA=bARA÷INCA5 AS:IiNCD=L.I1÷NCh LI1--1; CTRf1--LI1s P5)=A

62

NRL REPORT 7831

L3,- A5:bARA=BARA-INCA; X 1)=RSHbUFAA ZROS

LAP Ml:X2CI)*i7i; A5:,bARA=bARA+INCA.-s; A6:INC!=LTl'-INCR3 Y(1)=RSH5UVA;
C(6) =CTRJs

LS'; tll:X2(1)-tl; A5:DARA=LbAhA-INCA; X(2)-RSIH5bUFA; C'IRI=1,.(2); DECJS

L6!) M1:X2(2)7I; AS:bARA'bARA-'NCA-l; A6: RR,.CA); YC2)-RSHRUPA. DECJ;
Al:R1=PI+P2; A2:R2=Y1C1),AI;=-A3:FR3=P3-P4; A4^R4=Y2(1)+A3S

L7,, Mll:X2(2)*El; AS:fAhA=bARA-INCA; A6:bARb=bhARb-INCB; A7:LIT;
LIT=l,; XC1)=RWjHiUFA; bUF'b=h2h4; Al:Rl--YI(I)-Rl; A3:R3=Y2(1)-R3;
DECJ; WC9)=A7S

L8!) MI:X2(1)*-EI; A5:bARA=bARAtINCA+l; A6:bARb=bARb-ItNCb; YI)=kSHbUF.A;
bUFB=RlR3; Al:Rl=Pl+P2; A2:R2=YI(2)+A1; A3:R3=F3-P4i;
AA: R4=Y2(2) +A3$

L9pr Ml:X2Cl)*7-.1; A5:bARA=sAR.A-INCAs A6:bARkB=bARb-INCb; X(2)=RSHDUFA;
BUFB=R2R4;Al:RI=YI(2)-RI; A3:R3=Y2(2)-R3; DECJ; A7:INCR=LIT3
LIT=-1024i; WC()=A73:

LIOP Ml:X2C2)*Zl; A5:BARA=hAliA+INCA+I; A6:5ARkb=b.ARb-INCb; YC2)=RSHBiUFA;
BUFB=RIR3; AI:RI=P1 P2; A2:R2=YC(1)45Al; A3:R3=P3-P4;
A4:R4=Y2Cl)+At; IF NOT CTRJ THEN GO T0 L7S

LlL M1:X2C2)*71; A5:BARA=M4); A6:bARb=8ARB-INCb; bUFb=kR2R4;
AI:RI=YlC1)-Ri; A3:R3=Y2(1)-R3S

L12# A5:BARA=BARA+INCA; A6:hARB=BARB-INCB; A7:LIT+RSHW(6); BUFB=RIR3;
AI:Rl=?l+P2; A2:R2=YIC2)+AI; A3:R3=P3-P4; A4:R4=Y2(2)+A33 W(6)=A7;
CTRJ=FPSH W(6) S

L13P) A6:DARb=RARB-INCB; bUF=R2k4; APl:RI=Yi(2)-Rl; A3:R3=Y2(2)-R3;
DEC I S

L14* BUFt=RlIR3; SWlAPS

L15?'i A5:BARA=bARA-INCA; A6:INCB=LIT-LSH'~(5); X(C)=RSHhUFAS Z=ROMS

L16# Ml:X2(I)*2I; A5:BARA=bARA+INCA+I; A7;RAR=RAR-INCR;
Y(I) =RSHBUFAS

L17"' MI:X2(C)*Zl; A5:.bARA=bARA-lNCA; X(2)=RSHBUFA3

LIE,) Ml :X2(2)*_7I, A5:bARA=bARAI+INCA+I; A6:UAYRFU=t:C4),
A7:flAR=RAR-rINCR; Y(2)=RSHL5UFA; Al;R1=Pl+P2; A3:R3=P3-P4;
A2:R2=Yl(l)-rAl; AA:R4=Y2(1)+A3; CECJS

1 19# Vl :X2(2)*,'1I; A5:bARA=biL;'A-INCA; A6:X(5RE_=LRD-INCb; xI)(=RSHbUFA;
f UFB=R21R4; t'.=F;0 Al!Ri=Yl(I)-Rl; A3iRF3Y2(I)-Rk3

L2C3P Ml :X2(1) t I) A5: LiRAAELARA +INCA + I; A6: Ls AFi, HbAR5 HrINCB F+ I
A 7v AlRAR- ± NCR3 Y C 1) RS H hA; bi LiF'-s5=R 1R3; A IIRI=P I P23 A 2.92=Y I (2) -PA I

A3, R3-r'3--?'; A4:1h4=Y2(2)+A3.S

1.21."]:X2(I)'tZl; AS:E5RARA;=N5ARA-lh'CA3 P6: DARB=B.9R'5-INCb;5.5 X(2) rRS 5L'UFA;
RUFK2KR; Al: P'1-=YIC2)-Ml3 A3: R3zY2(2)-k3;,DECJ; Z-hON$',S

63

SMITH AND RUSSO

L22v 111 IX2(2)£ *1; A5:BA.' =bARA INCA+]; A6: D!PH-DAPHrtC9); YC2)-RSRDtA;
A7~ RAPR=RAK-; INCR;l bUFM=kR!k3; A 1: h1-i1-2; A2:1k2=Y I(!)-,AI.;
A3:R3-P3-P4; A4;zR4=Y2C 1)+A3; IF NOT C-JRJ EIIIEN GO -iO L19S

L230 N1:X2(2):*l; A5:BA.RA=C(4); A6:bARu=bARi-IN' hC lh= b K2R4;
Ai :RlzYl(I)-Rl; A3:R3=Y2l(I)-R3S

1.2-4P A6:bARb=hARb+INCHIB-; A5:LIT±RSHlC.(6); C1H=RSHWC6); 1C6)=A5
bLUFB=RlR33 Al:RI=PITP2; A2:.-2=YI(2)÷,Al; A3:5R3=P3-P4; A4:R4=Y2(2)÷A3S

L25# A6:bAR3B=bARb-INCbs
blJFb=k2RA; GECI3 A1:bI=YI(2)-RI; A3:R3=Y2(2)-R3S

L26,, A5:bARA=BARA+INCA; A6:BARB=LIT+INCb; Vi5)=A7; bUFiB=RIR3;
CTRK=LSHW(S); SWAP; A7:LIT+LSHW(5)S

L27f, A5:BARA=bAARA-INCA; A6:INCB=BARB+INCb; X(I)=RSHbUFA; Z=ROM,
A7:INCR=LIT+RSHWC(8); l-t(8)=A7S

L28# Ml:X2(C)*EI; A5:BARA=bARA+INCA+I; A6:bARb=LIT--,(4);
A7:RAR=RAR-INCRJ Y(l)=RSHhUFA; LIT=-13 DECKS

L29# Ml:X2(1)*Z1s A5:bARA=BARA-INCA; XC2)=RSHiUFA; Z=ROM) DECKS

L30# Ml:X2(2)*tZ; A5:BARA=BARA+INCA+1; A7:RAR=RAR-INCR; Y(2)=RSHbUFA;
Al:RI=Pl+P2; A2:R2=Yl(I)+AI; A3:R3=P3-P4; A4:RA=Y2(1)+A3; IF CTRK
THEN GO TO L51; A6:EsARB=bARB+VC9)S

L31# M1:X2(2)*FlJ A5:BARA=bARA-INCA3 A6:BARb=bARB-INCb;
X(l)=RWHbUFA; bUFbI=R2R4; Z=ROMl; Al:RI=YI(I)-RI; A3:R3=Y2CI)-R3S

L32, Ml:X2C1)*FI; AS:8ARA=bARA+INCA+I; A6:bARB=BARb+INCB+I;
A7:RAR=RAR-INCR; Y(l)=RSHBUFA3 bUFB=RIR3; DECK; AI:RI=Pl+P2;
A2:R2=YIC2)+Al; A3:h3=P3-PA; A4:Re4=Y2(2)+A3S

L33!, Ml:X2C.l)*Zl; A5:bARA=hARA-IN"A; A6:BARB=BARb-INCB;
XC2)=RSHbUFA; bUFb=R2R4; DECK; Z=ROM; AI:RI=YI(2)-Rl;
A3:R3=Y2(2)-R3$

L34# M1:X2C2)*Z1; A5:BARA=bARA+INCA+1; A6:bARB=bARb+INCU+I;
A7:RAR=RAR-INCR; YC2)=RSHbUFA; bUFh=RIR3; Al:RI=PI-+P2;
A2:R2=YlCl)+Al; A3:hisP3-P4; A4:R4=Y2(1)+A3; IF NOT CTRK
THEN GO TO L315

L35# t4I:X2C2)*l;i AS:bARA=BARA-INCA; A6:RARh=bAAFb-lNCb;
XCI)=RSHBUFA; bUFB=R2R4; ClRK=WC(5)3 Z-=ROM; Al:RI=YI(I)-R1;
A3: R3=Y2(1) -lR3S

L.76!) Ml:X2C1)*ZI; A5:bAHA=BARA+INCAiFl;
A-6:bAhb=bARN-3-INCbl; A7:RARRAR+INCi; Y(I)=RSHbUFA;
bUFB=RIR3; DECK; Al:Rl=PI+P2; A2:R2=YI(2)-;AI; A3:R3=P3-P4;
AP4:R4=Y2(2)+A3S

1_37,,' tll:X2(1)8-~1; A5:bARA-AbARA-INCh3 A6:bARB=BARD-INCb;
XC2)r-RSHtUFA; bUF8=R2R4; DECK; E=RO,4 Al:RI=YlC2)-ll;
k3:l3=Y2(2) -RO3S

L 30 tH 1:X2C2) *Z1; AS: HRA=bARA- INCA- 13
1•6.: ?ARHbzDAf A-INCtD I; A7:Rhk--RARi- INCh; YC2)=!FSrHIJFA; BUFwD=RIk3;
Ai:'l=JPl-P22 A2:ii2=YIlI)+Al; A3:P3=r'3+P-i; A4:R4z:Y2CI)-A3S

64

NRL REPORT 7831

L39S t-71:X2(2)*Fl; AS:A3ARA=bARA-INCA; A6:bARR::BARfJ-INCD; DECK;
X(l)=RSHbUFA; BUFB=R2R4i; H=ROM; Al:Rl=YIC()--RI; A3:R3=Y2(1)+R3S

L4g9! M1:X2C1)*H41; A5:BARfA=bA,.A+RAICA+l3 AG:BgRDARB+INCb-lj
A7:RAR=kAR+INCR; YC 1))=SHBUFA: BUF'=RlRO3;
Al :RI=Pl-P2; A2:R2=YI(2)+AI; A3:R3=P3+P4; AP4:R4=Y2(2)-A3S

L41# MI:X2(1)*Tl; A5:BARA=BARA-INCA; A6:bAR=BhARB-INCb;
X(2)=RSHbUFA; bUFb=k2R4; DECK; Z=ROM; Al:Rl=Yl(2)-RI;
A3:R3=Y2C2)+R35

L42# M1:X2(2)*=-l; A5:bARA=B3ARA+INCA+I; A6:bARb=bARd4-INCb+I;
.bUFU=RIR3; Al:Rl=Pl-P23 A2:FR2=YI(I)+AI; A3:R3=P3+P4;
A4:R4=Y2Cl)-A3; A7:RAR=RAR+INCR; IF NOT CTRK THEN GO TO L393
Y(2)=RSHBUFAS

L43# Ml:X2(2)*Zl; A5:BARA=BARA-INCA; A6:bARb=bAR8-INC8; Z=ROM;
XCl)=RSHbUFA1 bUFb=R2R4; CTRK=V(5), DECJ3 Al:kR=YlCl)-Rl;
A3:R3=Y2(1)+R3S

L44# Ml:X2(1)*Els A5:bARA=bARA+INCA+13 A6:bAR.Fr=bARbEINC8+l;
A7:RAR=RAR-INCR; Y(l)=RSHBUFA; bUFB=RIR3; A:RlR=Pl-P23
A2:R2=YI(2)+AI; A3:R3=P3+P43 A4:R4=Y2(2)-A3; DECK$

L45# Ml:X2(1)*-.I; A5:BARA=bARA-INCA; A6:BARB=bARB-INC8; Z=ROM;
BUFb=R2R4; Al:R1=YI(2)-R1; A3:k3=Y2(2)+R33 DECK; XC2)=RSHbUFA;
ACSAR=LITJ LIT=1_60$

LA465 Ml:X2(2)*El; A5:BARA=BhARA+INCA+l1 Y(2)=RSHBUFA; A7:RAR=RAR-INCR;
Al:RI=Pl+P2; A2:R2=Yl(l)+AI; A3:R3=P3-P4; A4:R4=Y2C1)+A3IbUFb=Rlk3;
A6:bARb=bARb+W(9); IF NOT CTRJ THEN GO TO L315

L4W7 A5:EsARA=VCj); A7:RAR=LIT3 DECI; SLAPS

L4A. A5 bARA=bARA+lNCA; A6:RSHWC6); W(6)=A6; CTRJ=RSHW(6)3 IF
CTRI THEN GO TO ACSAR; A7:R7=LIT; LIT=L27$

L50!) A5:LSHhC5); W(5)=A5; CTRK=LSHhC5)s GO TO R7; A6:bARb=LIT+INCEi5

L51' Ml:X2(2)*Z1j A5:BARA=bARA-INCA; A6:bARb=BARb-INCB3; =ROM;
X(l)=RSHbUFA; BUFb=R2R43 Al:Rl=Y1(C)-h1; A3:R3=Y2(l)-R3S

L52#t Ml:X2C(lIZl; AS:bARA=BARA+INCA+1; A6 BAR= bARi+INCB!+1;
A7: RAR=RAR+INCH;
Y(l)=RSHBUFAP 8UFb=RlR3; Al:R1=PI+P2; A2:R2=Yl(2)+Al;
A3:R3=P3-P4; A:4 R4=Y2C2)+A35

L 53!) Ml :X2C I)t-1; A5:BARDA=FARA-INCAj A6:bARRb=hARFH-iNCB; Z=ROM;
XC2)zRSHHUFAi; EBU~b=R2R'i A3:R1=Yl(2)-Rl; A3:R3=Y2(2)-R3s

LSAf/i Mi!:X2(2)*Hl; A5:uARA=bARA+\INCA+l; A6iB6Rh=BARB-+INCH-I;
A-!: RAR=RAfR±+l'1CR; YC 2) SHbA; DU.-s=R1R33 Al Rl-P1-P23
AA2:R2=YlC1)+A1; A3:R3=P3-A4j A/i:AR=Y2(l)--A-3; DECJ.s

L5 5/ Ml :X2(2) --ZI; P5-bARA=BP.RA- INCA; A66 iAR biRB-INCB3 Z=RO-1
X(l)::RSHbiUF^A; UUFH-1P2R'43 Al :Rl:-Yl)-i; A3:R3=Y2C1)2.-R3S

65

SMITH AND RUSSO

L5i Ml:X2(C1)4El; tA5:bARA=BRA-+INCA+l; A6:bRB-BAR,'H+INCb+l;
p,7eRAR=RP.R-IN!CR; YC1)=RSHbUF'A; bUi'B=RlR3; Al:RI=Pl-F'2i
A2:R2=Y1(2)+Al; A3:R3=P•-rP4; AA:R4-=Y2(2)-A3; ACSAR=LIT; LIT=L-SS

L57P tM1 :X2(1)£7 it A5: bARA=BtRA-INCA; A6:EBAZB=BANB-INCGB E=ROM;
X(2)=RSHi3UFA; BUFB=R2R4; Al:Rl-YC2)-R13 A3:'3=Y2C2)+R3S

LSS& Ml:X2(2)E;Il A5:BARA=BARA+INCA+l; A7:RAR=RAR-INCR; Y(2)=RSHBUFA;
Al:R1=PI+P2; A2:R2=YI(l)+Al, A3:R3=P3-Plf; A4:R4=Y2(1)+A3; bUF8=RllR3;
A6:03ARB=SARU+W(9); IF NOT CTRJ THEN GO TO L51S

L59# A5:BARA=WC(4); A7:R.AR-LIT; DECI3
SWhAP3 GO TO ACSAR$

L6P0# A7: R7=LIT+I;CI1)3 LIT=0S
L61# GO 10 R7 S

66

Appendix C

FAST FOURIER TRANSFORM ALGORITHM

A DFT of a sequence of N (generally) complex input points X(j) is given by the
equation

N-i1 2irijn
A(n) = E XN) expN n = 0, 1, ..., N- 1 (C1)

where i represents the square root of minus one (i=J- 1). Direct evaluation of Eq. (Cl)
requires approximately N2 multiplications, whereas the number for indirect FFT methods
is approximately 2N log2 N when a radix 2 factorization of the equation is used.t An
FFT algorithm can be derived conveniently in matrix form as follows. Consider the input
and output data arrays to be complex column vectors X and A, respectively, and express
the DFT as a matrix product:

A = WNX (C2)

where WN is an N X N matrix whose elements are

F 2ir i1

WN(n,j) =[exp - nj modulo N] (C3)

A = [A(O) A(1) ... A(N- 1)] T (C4)

X = [X(O) X(1) ... X(N-1)] T (C5)

where the superscript T denotes a transpose of rows and columns. A row-permuted version
of WN, denoted by the matrix product

WN 1 = RWN, (C6)

can be partitioned and factored repeatedly to obtain the FFT. The rows of WN are indexed
in binary notation with zero origin, and then reordered as if the indices were read in reversed

t"What is the Fast Fourier Transform?," G-AE Subcommittee on Measurement Concepts, IEEE Trans.
Au-15, No. 2 (1967).

67

SMITH AND RUSSO

fashion with the most significant bit at the right. For example, when N = 8, the normal
sequence of indices is 0,1,2,3,4,5,6,7 and the bit-reversed sequence is 0,4,2,6,1,5,3,7. In
this case R has the form

10000000
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0

R 0 0 0 0 0 0 1 0 (C7)
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
00000001

Partitioning WN1 into submatrices of dimension N/2 and factoring yields

[N °N/ N/0 L I/2 I (C8)

where I is the identity matrix and K represents a family of diagonal matrices of weighting
terms

KN/2 = diag[wO w1 ... WN2-1] (C9)

KN/ 4 = diag[wO W2 w4 ... W2(N/4 1)] (C10)

where w = exp (2iri/N).

The first factor Eq. (C8) can be partitioned and expanded similarly, and when this
process is repeated to its limit, an FFT algorithm results which, however, has an important
drawback:

0] [i0 0W N/2] W N14 0 [K I 0 L O
= . o~~~0KN/4 0 0 I -I 0 0

0 ~0 I 0 0 I
0 WN12 0 W N14 1 OKN/ 4 10 0 I (Cli)

In the second factor of Eq. (Cli), the I and K terms alternate along the diagonal, and in
the third factor the I and - I terms alternate. Computations can be simplified by grouping
similar terms together with the aid of shuffling matrices S. The shuffles are performed
in a manner similar to cutting a deck of cards into two piles and merging them, alternating
either single cards, pairs, or quadruplets, etc. Define S1 , S2, . .. as follows:

S1 X = [X(O) X(N/2) X(1) ±(N/2+1 . . .X(N- 1)] T (C12)

68

NRL REPORT 7831

(C13)SeX = [X(O) X(1) X(Ng2) X(N/2+1) ... X(N- 1)] T

These matrices are all orthogonal:

siT Si = I . (C14)

A complete set of shuffles is equivalent to bit-reversed permutation; that is,

(C15)SN/4 SN/8 ..- S2 S1 R.

For example, when N = 8, the sequence of indices in S1 X is
of S2 S1 X is 0,4,2,6,1,5,3,7, which is the RX sequence. The
may be written in terms of S:

0,4,1,5,2,6,3,7, and the sequence
second and third terms of (Cll)

O I

SN/4 o o

0L0

F0 0I0
O KN /4 ° =

I I 0 I

1 -1 0 0 =
f I I =SN4

0 0 I -I

By continued expansion,

I

I
0

0

SN4 [I

0 1 0
1 0 1
0-1 0
I 0 -

0 O
0 o

KN/4 0
0 KN, 4 _

I

KN14
I] p I21 SN14 [KN2 [:

KN/4- - I 1

where zero terms have been left blank. When carried to completion,

SN18 .. S 1K
' K I I:-1 I

K1
K K]

[KN/2][I]I
69

N/T
SN/4

T
SN1 /4

(C16)

(C17)

W1

WN1

- I (C18)

LI

S1T

K2 []

(C19)

SMITH AND RUSSO

The first two bracketed factors in Eq. (C19) are identity matrices I, and the product
of the first S matrices is R, so that

IN [1] /1*.N4 [' Ky][I I (C20)

Because WN is by nature symmetric, it may also be written as

WN = [: -1] [I KN,2] SN14 I: I] IK N/8 . . .

K ~~~~~~~~(C21)
[-] [I. [S I -I] L KNl4

which is the form used in the benchmark program.

70

NRL REPORT 7831

GLOSSARY

A3, A5

A(n)

ACSAR

*

BARA

BARB

BUFA

BUFB

Butterfly

CFIL

CONJG

CTRI, CTRJ, CTRK

DECI, DECJ, DECK

DEMOD

DFT

f

FFT

IAT

INCA

INCB

Adders numbers 3 and 5 in the SPAU

Spectral line, fast Fourier transform output indexed on n

Alternate Control Store Address Register

Convolution of two functions

Buffer Address Register A

Buffer Address Register B

Brace signifies whole array; e.g., f {X} is the Fourier transform
of array X

Buffer Store on Channel A

Buffer Store on Channel B

Basic Arithmetic Operation in a radix 2 FFT

Label in Program OCT

Macro subsection of Program XCORREL

Counters in the SPAU

Instructions to decrement SPAU counters

Label in Program OCT

Discrete Fourier transform

Fourier transform

Fast Fourier transform

Indirect Address Table in Program WGTSUM

Increment Register A

Increment Register B

71

SMITH AND RUSSO

Symbolic name of Complex FFT Program

Low-pass filter

Microprogrammed Control Unit of the SPE

Macro subsection of Program XCORREL

Number of points in a data array

Symbolic name of the Coherent Demodulation and Octave
Filtering Program

Product registers in the SPAU

Ready-only memory address register

Symbolic name of the Real FFT Program

Label in program OCT

Read only memory (coefficient store)

Signal Processing Arithmetic Unit of the SPE

Signal Processing Element (AN/UYK-17)

Complex conjugation

Steering delay in Program XCORREL

Delay terms in a two-pole filter

Locations in W store

Symbolic name of the Complex Weighting Program

Discrete data point input to FFT, indexed on j

Data input to Fourier transform, a function of t

Channel input in Program XCORREL

Symbolic name of the Crosscorrelation Program

Beam input in Program XCORREL

Crosscorrelation output in Program XCORREL

72

LFFT

LPF

MCU

MLT

N

OCT

P1,P2,P4

RAR

REFFT

RFIL

ROM

SPAU

SPE

TRm

WO,W1,W2

W(0,1 ,. . .,1 5)

WGTSUM

X0)

X(t)

X(Wk)

XCORREL

Y(wk)

@(Wk)

